МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Кузбасский государственный технический университет имени Т. Ф. Горбачева»

Филиал КузГТУ в г. Новокузнецке

УТВЕРЖДЕНО Дирекуор филиала

Кузгия ит. Новокузнецке Т.А. Евсина

23» 05 2024

Рабочая программа дисциплины

Математическое моделирование рисковых ситуаций

С специальность 38.05.01 Экономическая безопасность Специализация / направленность (профиль) Экономико-правовое обеспечение экономической безопасности

> Присваиваемая квалификация «Экономист»

> > Формы обучения очно-заочная

Год набора 2023

Рабочая программа обсуждена на заседании учебно-методического совета филиала КузГТУ в г. Новокузнецке

Протокол № 6 от 29.05.2024

Зав. кафедрой ИТиЭД

В.В. Шарлай

подпись

СОГЛАСОВАНО:

Заместитель директора по УР

Т.А. Евсина

1 Перечень планируемых результатов обучения по дисциплине "Математическое моделирование рисковых ситуаций", соотнесенных с планируемыми результатами освоения образовательной программы

Освоение дисциплины направлено на формирование:

профессиональных компетенций:

ПК-3 - Способность создавать системы управления финансово-экономическими показателями и мониторинга финансово-экономических показателей организации с применением информационных технологий, определять возможности использования готовых проектов, алгоритмов, пакетов прикладных программ

Результаты обучения по дисциплине определяются индикаторами достижения компетенций

Индикатор(ы) достижения:

Выбирает метод решения поставленной задачи, анализирует полученный результат

Результаты обучения по дисциплине:

Знает основные понятия и алгоритмы решения

Умеет использовать математические методы для решения поставленных задач

Владеет основными техниками математических расчетов

2 Место дисциплины "Математическое моделирование рисковых ситуаций" в структуре ОПОП специалитета

Для освоения дисциплины необходимы знания умения, навыки и (или) опыт профессиональной деятельности, полученные в рамках изучения следующих дисциплин: Математика, Эконометрика.

Дисциплина входит в Блок 1 «Дисциплины (модули)» ОПОП. Цель дисциплины - получение обучающимися знаний, умений, навыков и (или) опыта профессиональной деятельности, необходимых для формирования компетенций, указанных в пункте 1.

3 Объем дисциплины "Математическое моделирование рисковых ситуаций" в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины "Математическое моделирование рисковых ситуаций" составляет 2 зачетных единицы, 72 часа.

Фонто об-	Количество часов		
Форма обучения		03Ф	3Ф
Курс 3/Семестр 6			
Всего часов		72	
Контактная работа обучающихся с преподавателем (по видам учебных занятий):			
Аудиторная работа			
Лекции		6	
Лабораторные занятия			
Практические занятия		8	
Внеаудиторная работа			
Индивидуальная работа с преподавателем:			
Консультация и иные виды учебной деятельности			
Самостоятельная работа		58	
Форма промежуточной аттестации	зачет	зачет /4	

4 Содержание дисциплины "Математическое моделирование рисковых ситуаций", структурированное по разделам (темам)

4.1. Лекционные занятия

3

Раздел дисциплины, темы лекций и их содержание	Трудоемкость в часах		
	ОФ	ОЗФ	3Ф
1. Математическое моделирование. 1. Виды математических моделей. 2. Алгоритм построения математической модели реальной ситуации.			
Динейное программирование. Постановка задачи линейного программирования. Графический метод решения задач линейного программирования. Транспортная задача. Метод потенциалов		2	
3. Сетевое и календарное планирование. 1. Принципы построения сетевой модели. 2. Расчет сетевой модели. 3. Календарный график работ.		2	
4. Теория игр. 1. Моделирование конфликтных ситуаций в виде матричных игр. 2. Решение матричных игр в чистых стратегиях. 3. Решение матричных игр в смешанных стратегиях.		2	
итого		6	

4.2 Практические (семинарские) занятия

Тема занятия	Трудоемкость в часах		ax
	ОФ	ОЗФ	3Ф
1. Математическое моделирование. 1. Виды математических моделей. 2. Алгоритм построения математической модели реальной ситуации.		2	
Динейное программирование. Постановка задачи линейного программирования. Графический метод решения задач линейного программирования. Транспортная задача. Метод потенциалов		2	
3. Сетевое и календарное планирование. 1. Принципы построения сетевой модели. 2. Расчет сетевой модели. 3. Календарный график работ.		2	
4. Теория игр. 1. Моделирование конфликтных ситуаций в виде матричных игр. 2. Решение матричных игр в чистых стратегиях. 3. Решение матричных игр в смешанных стратегиях.		2	
итого		8	

4.3 Самостоятельная работа обучающегося и перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

Вид СРС	Трудоемкость в часах		
	ОФ	ОЗФ	3Ф
Решение задач в соответствии с изучаемым разделом.		40	
Подготовка к текущему контролю успеваемости и промежуточной аттестации		18	
итого		58	
Зачет		4	

5 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине "Математическое моделирование рисковых ситуаций"

5.1 Паспорт фонда оценочных средств

1 1	Компетенции, формируемые в результате освоения дисциплины (модуля)	_	Результаты обучения по дисциплине (модулю)	_
Опрос по контрольным вопросам и/или решение задач и/или тестирование	ПК-3	решения поставленной задачи, анализирует полученный результат	Знает основные понятия и алгоритмы решения Умеет использовать математические методы для решения поставленных задач Владеет основными техниками математических расчетов	или средний

Высокий уровень результатов обучения - знания, умения и навыки соотносятся с индикаторами достижения компетенции, рекомендованные оценки: отлично; хорошо; зачтено.

Средний уровень результатов обучения - знания, умения и навыки соотносятся с индикаторами достижения компетенции, рекомендованные оценки: хорошо; удовлетворительно; зачтено.

Низкий уровень результатов обучения - знания, умения и навыки не соотносятся с индикаторами достижения компетенции, оценивается неудовлетворительно или не зачтено.

5.2. Типовые контрольные задания или иные материалы

Текущий контроль успеваемости и промежуточная аттестация обучающихся могут проводиться как при непосредственном взаимодействии педагогического работника с обучающимися, так и с использованием ресурсов ЭИОС КузГТУ, в том числе синхронного и (или) асинхронного взаимодействия посредством сети «Интернет».

5.2.1.Оценочные средства при текущем контроле

Текущий контроль по темам дисциплины заключается в опросе обучающихся по контрольным вопросам и (или) решении задач и (или) тестирование.

Опрос по контрольным вопросам:

При проведении текущего контроля обучающимся будет письменно, либо устно либо в электронной форме задано два вопроса, на которые они должны дать ответы. Например:

- 1. Постановка задач линейного программирования (ЛП) на максимальное значение целевой функции
- 2. Постановка задач линейного программирования (ПП) на минимальное значение целевой функции

Критерии оценивания:

- 85-100 баллов при правильном и полном ответе на все вопросы;
- 65-84 баллов при правильном и полном ответе на один из вопросов и правильном, но не полном ответе на другой из вопросов;
 - 25-64 баллов при правильном и неполном ответе только на один из вопросов;
 - 0-24 баллов при отсутствии правильных ответов на вопросы.

Решение задач:

При проведении текущего контроля обучающимся будет письменно, либо устно либо в электронной форме задано три задачи, которые необходимо решить. Например:

- 1. Решить задачу графическим методом.
- 2. Решить транспортную задачу.
- 3. Построить календарный график выполнения работ.

Критерии оценивания:

- 85-100 баллов при правильном и полном решении всех задач;
- 65-84 баллов при равильном и полном решении двух задач и правильном, но не полном решении третьей задачи;
 - 0...64 баллов в прочих случаях.

Тестирование (в том числе компьютерное):

При проведении текущего контроля обучающимся необходимо будет письменно либо в электронной форме ответить на 20 тестовых вопросов. Например:

- 1. Градиент целевой функции применяется для нахождения
- области возрастания целевой функции;
- области убывания целевой функции;
- области постоянства целевой функции;
- экстремумов целевой функции.
- 2. Задача поиска экстремума линейной функции при линейных ограничениях называется ...
- задачей линейного программирования;
- задачей нелинейного программирования;
- задачей динамического программирования;
- задачей целочисленного программирования;
- задачей дискретного программирования;
- 3. Задача поиска экстремума линейной функции при линейных ограничениях, в которой переменные принимают с целочисленные значения называется ...
 - задачей линейного целочисленного программирования;
 - задачей нелинейного целочисленного программирования;
 - задачей динамического программирования;
 - задачей целочисленного программирования;
 - задачей дискретного программирования;

За каждый правильно данный ответ обучающийся получает 5 баллов.

Примерный перечень контрольных вопросов:

1. Математическое моделирование.

- 1. Математическое моделирование, свойства.
- 2. Вид области допустимых решений в двухмерном случае.
- 3. Вид области допустимых решений в п-мерном случае.
- 4. Случаи отсутствия решений в двухмерном случае.
- 5. Случаи бесконечного числа решений в двухмерном случае.
- 6. Виды математических моделей.
- 7. Алгоритм построения математической модели реальной ситуации.
- 8. Канонический вид системы ограничений.
- 9. Построение опорного решения.
- 10. Теоремы об оптимальном решении.

2. Линейное программирование.

- 1. Постановка задач линейного программирования (ЛП) на максимальное значение целевой функции.
- 2. Постановка задач линейного программирования (ЛП) на максимальное значение целевой функции.
 - 3. Графический метод решения задач ЛП.
 - 4. Постановка транспортной задачи.
 - 5. Приведение задачи открытого типа к закрытой.
 - 6. Метод северо-западного угла.

- 7. Метод наименьшей стоимости.
- 8. Метод потенциалов.
- 9. Транспортная задача. Общий случай.
- 10. Открытая транспортная задача.

3. Сетевое и календарное планирование.

- 1. Основные понятия: событие, дуга, операция, граф....
- 2. Принципы построения сетевой модели.
- 3. Фиктивныя операция.
- 4. Прямой проход.
- 5. Обратный проход.
- 6. Критический путь.
- 7. Резервы времени.
- 8. Свободный резерв времени.
- 9. Расчет сетевой модели.
- 10. Календарный график работ.

4. Теория игр.

- 1. Матричные игры.
- 2. Решение матричных игр в чистых стратегиях.
- 3. Решение матричных игр в смешанных стратегиях.
- 4. Принцип доминирования стратегий.
- 5. Построение матричной игры.
- 6. Решение матричной игры графоаналитическим методом.
- 7. Седловая точка игры в чистых стратегиях. Ее свойсва.
- 8. Основная теорема матричных игр.
- 9. Антоганистическая игра: сущность, связь функции выигрыша игроков.
- 10. Виды игр.

Примерный перечень задач:

1. Математическое моделирование.

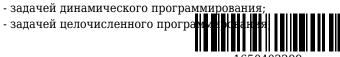
- 1. Построить область допустимых решений.
- 2. Построить изолинии целевой функции.
- 3. Построение области допустимых решений в двухмерном случае.
- 4. Построение области допустимых решений в п-мерном случае.
- 5. Построить математическую модель.

2. Линейное программирование.

- 1. Решить графическим методом.
- 2. Решить открытую транспортную задачу.
- 3. Решить закрытую транспортную задачу.
- 4. Построить начальный опорный план.
- 5. Решить задачу о назначениях.

3. Сетевое и календарное планирование.

- 1. Расчитать критический путь.
- 2. Построить ранне-календарный план выполнения работ.
- 3. Построить поздне-календарный план выполнения работ.
- 4. Ввести фиктивные операции.
- 5. Расчитатьрезервы времени.


4. Теория игр.

- 1. Составить математическую модель игры.
- 2. Решить матричную игру в чистых стратегиях (mxn).
- 3. Решить матричную игру (2x2).
- 4. Выполнить доминирование.
- 5. Решть матричную игру (mx2).
- 6. Решть матричную игру (2xn).
- 7. Свести матричную игру к паре задач линейного программирования.

Примерный перечень тестовых заданий:

1. Математическое моделирование.

- 1. Задача поиска экстремума линейной функции при линейных ограничениях называется ...
- задачей линейного программирования;
- задачей нелинейного программирования;
- задачей динамического программировани

- задачей дискретного программирования;
- 2. Задача поиска экстремума линейной функции при линейных ограничениях, в которой переменные принимают с целочисленные значения называется ...
 - задачей линейного целочисленного программирования;
 - задачей нелинейного целочисленного программирования;
 - задачей динамического программирования;
 - задачей целочисленного программирования;
 - задачей дискретного программирования;
 - 3. Закончите предложение: «Модель, по сравнению с объектом-оригиналом, содержит ...»
 - меньше информации;
 - столько же информации;
 - больше информации
 - 4. Моделирование это:
- процесс замены реального объекта (процесса, явления) моделью, отражающей его существенные признаки с точки зрения достижения конкретной цели;
 - процесс демонстрации моделей одежды в салоне мод;
 - процесс неформальной постановки конкретной задачи;
- процесс замены реального объекта (процесса, явления) другим материальным или идеальным объектом;
 - процесс выявления существенных признаков рассматриваемого объекта.
 - 5. Процесс построения модели, как правило, предполагает:
 - описание всех свойств исследуемого объекта;
 - выделение наиболее существенных с точки зрения решаемой задачи свойств объекта;
 - выделение свойств объекта безотносительно к целям решаемой задачи;
 - описание всех пространственно-временных характеристик изучаемого объекта;
 - выделение не более трех существенных признаков объекта.
 - 6. Математическая модель объекта это:
- созданная из какого-либо материала модель, точно отражающая внешние признаки объекта-
 - описание в виде схемы внутренней структуры изучаемого объекта;
- совокупность данных, содержащих информацию о количественных характеристиках объекта и его поведения в виде таблицы;
- совокупность записанных на языке математики формул, отражающих те или иные свойства объекта-оригинала или его поведение;
 - последовательность электрических сигналов.
 - 7. К числу математических моделей относится:
 - милицейский протокол;
 - правила дорожного движения;
 - формула нахождения корней квадратного уравнения;
 - кулинарный рецепт;
 - инструкция по сборке мебели.
 - 8. Рисунки, карты, чертежи, диаграммы, схемы, графики представляют собой:
 - табличные информационные модели;
 - математические модели;
 - натурные модели;
 - графические информационные модели;
 - иерархические информационные модели.
 - 9. Модель есть замещение изучаемого объекта другим объектом, который отражает:
 - все стороны данного объекта
 - некоторые стороны данного объекта
 - существенные стороны данного объекта
 - несуществующие стороны данного объекта
 - 10. Закончите предложение: "Можно создавать и использовать ..."
 - разные модели объекта
 - единственную модель объекта
 - только натурную модель объекта
 - 2. Линейное программирование.
 - 1. Градиент целевой функции:
 - вектор
 - матрица

- функция
- число
- 2. Стоимость перевозок вычисленная по методу северо-западного угла транспортной задачи

		10	10	20
	10	2	1	3
ĺ	30	3	1	2

равна

- градиентом данной функции
- базисным вектором
- допустимым планом
- единичным вектором
- опорным планом
- 3. Градиент целевой функции z=2x1 -x2 равен
- {2};
- {-1};
- {2;-1};
- 1.
- 4. Градиент целевой функции z=2x1 -x2 равен направлен
- в первую четверть;
- во вторую четверть;
- в третью четверть;
- в четвертую четверть;
- 5. Модуль градиента целевой функции z=3x1 -4x2 равен
- 3;
- 4;
- 5;
- 6.
- 6. Градиент целевой функции применяется для нахождения
- области возрастания целевой функции;
- области убывания целевой функции;
- области постоянства целевой функции;
- экстремумов целевой функции.
- 7. Для линейной функции двух переменных линия уровня представляет собой прямую, перпендикулярную вектору, который является
 - градиентом данной функции
 - базисным вектором
 - допустимым планом
 - единичным вектором
 - опорным планом
 - 8. Задача линейного программирования для целевой функции $Z=x_1+2x_2-x_3-x_4$ решается методом
 - симплекс-методом
 - графическим
 - потенциалов
 - северо-западного угла
- 9. Вставьте недостающее слово. Условия, налагаемые на переменные и ресурсы задачи линейного программирования, записываются в виде системы равенств или неравенств, т.е. [...] задачи

- ...

- 10. Сопоставьте термины и их определения.
- 1) Целевая функция и ограничения должны представлять собой сумму вкладов от различных переменных
 - 2) Совокупность чисел, удовлетворяющих ограничениям задачи линейного программирования
- 3) План, при котором целевая функция принимает свое максимальное (минимальное) значение

и

- Допустимое решение
- Оптимальное решение
- Аддитивность задачи ЛП
- 3. Сетевое и календарное планирование.
- 1.Сетевой график? это:
- линейно-календарное планиров

- схема, на которой в определенном порядке показаны все производственные операции по выполнению производственного процесса;
 - технологический процесс производства продукции.
 - 2. Основными элементами сетевого графика являются...
 - событие, работа, путь;
 - технический процесс, фиктивная работа, ресурсы;
 - логическая зависимость, исходное событие, фиктивная работа.
 - 3. Работа на сетевом графике изображается...
 - квадратом;
 - прямоугольником;
 - кружком;
 - стрелкой.
 - 4. Работа на сетевом графике ? это
 - трудовой процесс, не требующий затрат ресурсов;
 - трудовой процесс, требующий затрат ресурсов.
 - 5. События на сетевом графике изображаются...
 - квадратом;
 - прямоугольником;
 - кружком;
 - стрелкой.
 - 6. События на сетевом графике характеризуются тем, что...
 - не имеют длительности и не потребляют ресурсов;
 - имеют длительность и требуют затрат ресурсов.
 - 7. Путь сетевого графика? это...
 - длительность технологического цикла;
- непрерывная технологическая последовательность работ от исходного события до завершающего;
 - длительность вспомогательных и обслуживающих процессов.
 - 8. Работа на сетевом графике может соединять...
 - три события;
 - два события;
 - четыре события.
 - 9. Работы, лежащие на критическом пути...
 - имеют максимальные резервы времени;
 - минимальные резервы времени;
 - не имеют резервов времени.
 - 10. Критический путь сетевого графика? это...
 - путь, имеющий наибольшую продолжительность;
 - путь, имеющий наименьшую продолжительность;
 - путь от исходного события до данного.

4. Теория игр.

- 1. Предметом изучения теории игр являются
- математические модели принятия оптимальных решений в условиях конфликта;
- математические модели принятия решений;
- математические модели принятия решений в условиях конфликта;
- нет правильного ответа.
- 2. Противоборствующие стороны в конфликте называется
- игроками;
- конкурентами;
- компаньонами;
- участниками.
- 3. Принимаемые участниками конфликта решения называются
- Верно все три;
- стратегиями;
- чистыми стратегиями;
- смешанными стратегиями;
- 4. Цель участника конфликта отражается посредством
- функции выигрыша;
- функции проигрыша;
- функцией полезности;

- целевая функция.
- 5. Формально, т. е. в математической модели, процесс принятия решения в игре сводится к:
- выбору каждым игроком своей стратегии с целью максимизации своего выигрыша;
- выбору каждым игроком одной своей стратегии;
- выбору союзника;
- выбору каждым игроком своей стратегии с целью минимизации своего выигрыша;
- 6. Конфликт отражается в том, что
- исход игры для каждого игрока зависит от поведения всех его партнеров;
- исход игры для каждого игрока зависит от поведения нескольких его партнеров;
- исход игры ни от чего не зависит;
- исход игры для каждого игрока не зависит от поведения его партнеров.
- 7. В зависимости от количества игроков различают игры,
- верны все варианты;
- двух игроков и n
- игроков;
- п игроков и игры с бесконечным числом игроков;
- нет верных вариантов.
- 8. По количеству стратегий игры делятся на игры, в которых
- на конечные игры и бесконечные игры;
- у всех игроков равное число стратегий;
- у всех игроков разное число стратегий;
- у всех игроков четное число стратегий.
- 9. Конечная игра это
- игра с конечным числом стратегий у каждого игрока;
- игра с одинаковым числом стратегий у каждого игрока;
- игра с произвольным (конечным или бесконечным) числом стратегий у каждого игрока;
- игра с конечным числом игроков.
- 10. В каких играх игроки не могут вступать соглашения
- в бескоалиционных играх;
- в коалиционных играх;
- в кооперативных играх;
- верны все варианты

Количество баллов	064	6574	7584	85100
Шкала оценивания	Неудовлетворительно	Удовлетворительно	Хорошо	Отлично
	Не зачтено	Зачтено		

5.2.2 Оценочные средства при промежуточной аттестации

Формой промежуточной аттестации является зачет, в процессе которого оцениваются результаты обучения по дисциплине и соотносятся с установленными в рабочей программе индикаторами достижения компетенций. Инструментом измерения результатов обучения по дисциплине является устный ответ обучающегося на 2 теоретических вопроса, выбранных случайным образом и (или) решение трех задач и (или) ответ на 20 тестовых заданий.

Опрос может проводиться в письменной и (или) устной, и (или) электронной форме (2 вопроса).

Критерии оценивания:

- 85-100 баллов при правильном и полном ответе на все вопросы;
- 65-84 баллов при правильном и полном ответе на один из вопросов и правильном, но не полном ответе на другой из вопросов;
 - 25-64 баллов при правильном и неполном ответе только на один из вопросов;
 - 0-24 баллов при отсутствии правильных ответов на вопросы.

Задачи могут быть представлены в письменной либо в электронной форме (три задачи).

Критерии оценивания:

- 85-100 баллов при правильном и полном решении всех задач;
- 65-84 баллов при равильном и правильном, но не полном решении третьей задачи;

- в прочих случаях - 0-64 балла.

Тестирование может проходить письменно либо в электронной форме (20 тестовых вопросов). За каждый правильно данный ответ обучающийся получает 5 баллов.

Примерный перечень вопросов:

- 1. Случаи отсутствия решений в двухмерном случае.
 - 2. Канонический вид системы ограничений.
 - 3. Графический метод решения задач ЛП.
 - 4. Постановка транспортной задачи.
 - 5. Приведение задачи открытого типа к закрытой.
 - 6. Метод северо-западного угла.
 - 7. Резервы времени.
 - 8. Свободный резерв времени.
 - 9. Расчет сетевой модели.
 - 10. Календарный график работ...

Примерный перечень задач:

- 1. Построить математическую модель.
- 2. Решить графическим методом.
- 3. Решить открытую транспортную задачу.
- 4. Расчитать критический путь.
- 5. Расчитатьрезервы времени.

Примерный перечень тестовых заданий:

- 1. Задача поиска экстремума линейной функции при линейных ограничениях, в которой переменные принимают с целочисленные значения называется ...
 - задачей линейного целочисленного программирования;
 - задачей нелинейного целочисленного программирования;
 - задачей динамического программирования;
 - задачей целочисленного программирования;
 - задачей дискретного программирования;
 - 2. Моделирование это:
- процесс замены реального объекта (процесса, явления) моделью, отражающей его существенные признаки с точки зрения достижения конкретной цели;
 - процесс демонстрации моделей одежды в салоне мод;
 - процесс неформальной постановки конкретной задачи;
- процесс замены реального объекта (процесса, явления) другим материальным или идеальным объектом;
 - процесс выявления существенных признаков рассматриваемого объекта.
 - 3. Математическая модель объекта это:
- созданная из какого-либо материала модель, точно отражающая внешние признаки объектаоригинала;
 - описание в виде схемы внутренней структуры изучаемого объекта;
- совокупность данных, содержащих информацию о количественных характеристиках объекта и его поведения в виде таблицы;
- совокупность записанных на языке математики формул, отражающих те или иные свойства объекта-оригинала или его поведение;
 - последовательность электрических сигналов.
 - 4. Градиент целевой функции z=2x1 -x2 равен направлен
 - в первую четверть;
 - во вторую четверть;
 - в третью четверть;
 - в четвертую четверть;
 - 5. Модуль градиента целевой функции z=3x1 -4x2 равен
 - 3;
 - 4:
 - 5;
 - 6.
 - 6. Градиент целевой функции применяется для нахождения
 - области возрастания целевой функции;
 - области убывания целевой функции;
 - области постоянства целевой функции;
 - экстремумов целевой функции.

- 7. Путь сетевого графика? это...
- длительность технологического цикла;
- непрерывная технологическая последовательность работ от исходного события до завершающего;
 - длительность вспомогательных и обслуживающих процессов.
 - 8. Работа на сетевом графике может соединять...
 - три события;
 - два события;
 - четыре события.
 - 9. Работы, лежащие на критическом пути...
 - имеют максимальные резервы времени;
 - минимальные резервы времени;
 - не имеют резервов времени.
 - 10. Критический путь сетевого графика? это...
 - путь, имеющий наибольшую продолжительность;
 - путь, имеющий наименьшую продолжительность;
 - путь от исходного события до данного.

Количество баллов	064	6574	7584	85100
Шкала оценивания	Неудовлетворительно	Удовлетворительно	Хорошо	Отлично
	Не зачтено	Зачтено		

5.2.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций

При проведении текущего контроля успеваемости в форме опроса по распоряжению педагогического работника обучающиеся убирают все личные вещи, электронные средства связи, печатные и (или) рукописные источники информации, достают чистый лист бумаги любого размера и ручку. На листе бумаги записываются Фамилия, Имя, Отчество (при наличии), номер учебной группы и дата проведения текущего контроля успеваемости. Педагогический работник задает вопросы, которые могут быть записаны на подготовленный для ответа лист бумаги. В течение установленного педагогическим работником времени обучающиеся письменно формулируют ответы на заданные вопросы. По истечении установленного времени лист бумаги с подготовленными ответами обучающиеся передают педагогическому работнику для последующего оценивания результатов текущего контроля успеваемости.

При проведении текущего контроля успеваемости в форме тестирования по распоряжению педагогического работника обучающиеся убирают все личные вещи, электронные средства связи, печатные и (или) рукописные источники информации, получают тестовые задания в печатной форме, где указывают Фамилия, Имя, Отчество (при наличии), номер учебной группы и дату проведения текущего контроля успеваемости. В течение установленного педагогическим работником времени обучающиеся письменно проходят тестирование. По истечении установленного времени тестовые задания с ответами обучающиеся передают педагогическому работнику для последующего оценивания результатов текущего контроля успеваемости.

Компьютерное тестирование проводится с использованием ЭИОС КузГТУ.

При проведении промежуточной аттестации в форме зачета, проводимого устно или письменно, по распоряжению педагогического работника обучающиеся убирают все личные вещи, электронные средства связи, печатные и (или) рукописные источники информации, достают чистый лист бумаги любого размера и ручку, выбирают случайным образом экзаменационный билет. На листе бумаги записываются Фамилия, Имя, Отчество (при наличии), номер учебной группы, дата проведения промежуточной аттестации и номер вслучающиеся в течение установленного педагогическим работником времени, но не предеста в промежуточной письменно формулируют

ответы на вопросы экзаменационного билета, после чего сдают лист с ответами педагогическому работнику. Педагогический работник при оценке ответов на экзаменационные вопросы имеет право задать обучающимся вопросы, необходимые для пояснения предоставленных ответов, а также дополнительные вопросы по содержанию дисциплины.

При проведении промежуточной аттестации в форме тестирования по распоряжению педагогического работника обучающиеся убирают все личные вещи, электронные средства связи, печатные и (или) рукописные источники информации, получают тестовые задания в печатной форме, где указывают Фамилия, Имя, Отчество (при наличии), номер учебной группы и дату проведения промежуточной аттестации. В течение установленного педагогическим работником времени обучающиеся письменно проходят тестирование. По истечении установленного времени тестовые задания с ответами обучающиеся передают педагогическому работнику для последующего оценивания результатов.

Компьютерное тестирование проводится с использованием ЭИОС КузГТУ.

Результаты текущего контроля успеваемости доводятся до сведения обучающихся в течение трех учебных дней, следующих за днем проведения текущего контроля успеваемости, и могут быть учтены педагогическим работником при промежуточной аттестации. Результаты промежуточной аттестации доводятся до сведения обучающихся в день проведения промежуточной аттестации.

При подготовке ответов на вопросы при проведении текущего контроля успеваемости и при прохождении промежуточной аттестации обучающимся запрещается использование любых электронных средств связи, печатных и (или) рукописных источников информации. В случае обнаружения педагогическим работником факта использования обучающимся при подготовке ответов на вопросы указанных источников информации - оценка результатов текущего контроля успеваемости и (или) промежуточной аттестации соответствует 0 баллов.

При прохождении текущего контроля успеваемости и промежуточной аттестации обучающимися с ограниченными возможностями здоровья и инвалидами, допускается присутствие в помещении лиц, оказывающим таким обучающимся соответствующую помощь, а для подготовки ими ответов отводится дополнительное время с учетом особенностей их психофизического развития, индивидуальных возможностей и состояния здоровья.

6 Учебно-методическое обеспечение

6.1 Основная литература

- 1. Катаргин, Н. В. Экономико-математическое моделирование: учебное пособие / Н. В. Катаргин. Санкт-Петербург : Лань, 2018. 256 с. ISBN 978-5-8114-3075-8. URL: https://e.lanbook.com/book/107939 (дата обращения: 24.10.2021). Текст : электронный.
- 3. Гусева, Е. Н. Экономико-математическое моделирование / Е. Н. Гусева. Москва : ФЛИНТА, 2021. 216 с. ISBN 9785893499766. URL: http://biblioclub.ru/index.php?page=book_red&id=83540 (дата обращения: 05.06.2022). Текст : электронный.

6.2 Дополнительная литература

- 1. Горлач, Б. А. Математическое моделирование. Построение моделей и численная реализация / Б. А. Горлач, В. Г. Шахов. 2-е изд., стер. Санкт-Петербург : Лань, 2018. 292 с. ISBN 978-5-8114-2168-8. URL: https://e.lanbook.com/book/103190 (дата обращения: 24.10.2021). Текст : электронный.
- 2. Математическое моделирование / Л. А. Коробова, Ю. В. Бугаев, С. Н. Черняева, Ю. А. Сафонова; Научный редактор: Коробова Людмила Анатольевна. Воронеж: Воронежский государственный университет инженерных технологий, 2017. 113 с. ISBN 9785000322475. URL: http://biblioclub.ru/index.php?page=book_red&id=482006 (дата обращения: 05.06.2022). Текст: электронный.
- 3. Иванов, В. В. Математическое моделирование / В. В. Иванов, О. В. Кузьмина; Поволжский государственный технологический университет. Йошкар-Ола: Поволжский государственный технологический университет, 2016. 88 с. ISBN 9785815817449. URL: http://biblioclub.ru/index.php?page=book_red&id=459482 (дата обращения: 05.06.2022). Текст: электронный.
 - 4. Математическое моделирования Пинистрити объедования Российской Федерации; Северо-

Кавказский федеральный университет; Автор-составитель: Зеливянская О. Е.. - Ставрополь: Северо-Кавказский Федеральный университет (СКФУ), 2016. - 144 с. - URL: http://biblioclub.ru/index.php?page=book_red&id=467014 (дата обращения: 05.06.2022). - Текст: электронный.

6.3 Методическая литература

- 1. Математическое моделирование рисковых ситуаций: методические указания к контрольной работе для студентов заочной формы обучения направления подготовки 38.05.01 (080101.65) «Экономическая безопасность» / ФГБОУ ВПО «Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева», Каф. математики; сост. Е. А. Николаева. Кемерово: Издательство КузГТУ, 2015. 19 с. URL: http://library.kuzstu.ru/meto.php?n=8369 (дата обращения: 05.06.2022). Текст: электронный.
- 2. Математическое моделирование рисковых ситуаций: методические указания к практическим занятиям и самостоятельной работе для студентов направления подготовки 38.05.01 (080101.65) «Экономическая безопасность» для студентов дневной формы обучения / ФГБОУ ВПО «Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева», Каф. математики; сост. Е. А. Николаева. Кемерово: Издательство КузГТУ, 2015. 40 с. URL: http://library.kuzstu.ru/meto.php?n=8370 (дата обращения: 05.06.2022). Текст: электронный.

6.4 Профессиональные базы данных и информационные справочные системы

- 1. Электронная библиотечная система «Университетская библиотека онлайн» http://biblioclub.ru/
- 2. Электронная библиотечная система «Лань» http://e.lanbook.com
- 3. Электронная библиотека КузГТУ https://elib.kuzstu.ru/index.php?option=com_content&view=article&id=230&Itemid=229
- 4. Электронная библиотечная система Новосибирского государственного технического университета https://clck.ru/UoXpv
- 5. Научная электронная библиотека eLIBRARY.RU https://elibrary.ru/projects/subscription/rus-titles-open.asp?

6.5 Периодические издания

1. Известия Российской академии наук. Серия математическая : журнал (печатный)

7 Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

ЭИОС КузГТУ:

- 1. Электронная библиотека КузГТУ. Текст: электронный // Научно-техническая библиотека Кузбасского государственного технического университета им. Т. Ф. Горбачева : сайт. Кемерово, 2001 . URL: https://elib.kuzstu.ru/. Текст: элек-тронный.
- 2. Портал.КузГТУ: Автоматизированная Информационная Система (АИС): [сайт] / Кузбасский государственный технический университет им. Т. Ф. Горбачева. Кемерово: КузГТУ, [б. г.]. URL: https://portal.kuzstu.ru/. Режим доступа: для авториз. пользователей. Текст: электронный.
- 3. Электронное обучение : [сайт] / Кузбасский государственный технический университет им. Т. Ф. Горбачева. Кемерово : КузГТУ, [б. г.]. URL: https://el.kuzstu.ru/. Режим доступа: для авториз. пользователей КузГТУ. Текст: электронный.

8 Методические указания для обучающихся по освоению дисциплины "Математическое моделирование рисковых ситуаций"

Самостоятельная работа обучающегося является частью его учебной деятельности и организуется следующим образом:

- 1. До начала освоения дисциплины обучающемуся необходимо ознакомиться с содержанием рабочей программы дисциплины (модуля), в том числе:
 - с результатами обучения по дисциплине;
 - со структурой и содержанием дисциплины;
- с перечнем основной, дополнительной, методической литературы, профессиональных баз данных и информационных справочных систем, а также периодических изданий, использование которых необходимо при изучении дисциплины.
- 2. В период освоения дисциплина обучающийся осуществляет самостоятельную работу, включающую:

- решение задач;
- самостоятельное изучение тем, предусмотренных рабочей программой, но не рассмотренных на занятиях лекционного (семинарского) типа и (или) углубленное изучение тем, рассмотренных на занятиях лекционного (семинарского) типа в соответствии с перечнем основной и дополнительной литературы, профессиональных баз данных и информационных справочных систем, а также периодических изданий;
 - подготовку к текущему контролю успеваемости и промежуточной аттестации.

В случае затруднений, возникающих при выполнении самостоятельной работы, обучающемуся необходимо обратиться за консультацией к педагогическому работнику. Периоды проведения консультаций устанавливаются в расписании консультаций

9 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине "Математическое моделирование рисковых ситуаций", включая перечень программного обеспечения и информационных справочных СИСТЕМ

Для изучения дисциплины может использоваться следующее программное обеспечение:

- 1. Mozilla Firefox
- 2. Google Chrome
- 3. 7-zip
- 4. Microsoft Windows
- 5. ESET NOD32 Smart Security Business Edition
- 6. Kaspersky Endpoint Security
- 7. Браузер Спутник

10 Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине "Математическое моделирование рисковых ситуаций"

Для осуществления образовательного процесса по дисциплине предусмотрены специальные помещения:

- 1. Учебные аудитории для проведения занятий лекционного типа, занятий семинарского типа, групповых консультаций и (или) индивидуальной работы обучающихся с педагогическим работником, оснащенные учебной мебелью (столами, стульями), меловой и (или) маркерной доской, оборудованием для демонстрации слайдов.
- 2. Помещения для самостоятельной работы обучающихся, оснащенные учебной мебелью (столами, стульями), компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду КузГТУ.

11 Иные сведения и (или) материалы

Образовательный процесс осуществляется с использованием как традиционных, так и современных интерактивных технологий. При контактной работе педагогического работника с обучающимися применяются следующие элементы интерактивных тех-нологий:

- совместный разбор проблемных ситуаций;
- совместное выявление причинно-следственных связей вещей и событий, про-исходящих в повседневной жизни, и их сопоставление с учебным материалом

