МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Кузбасский государственный технический университет имени Т. Ф. Горбачева» Филиал КузГТУ в г. Новокузнецке

УТВЕРЖДАЮ
Директор филиала КузГТУ
КузГвуг. Новокузнецке
Забнева Э.И.

Рабочая программа дисциплины

Химия

Направление подготовки 20.03.01 Техносферная безопасность Профиль 01 Безопасность технологических процессов и производств

Присваиваемая квалификация «Бакалавр»

Формы обучения очная, очно-заочная

Deferring unconcerned accordance		
Рабочую программу составил		
Заведующий кафедрой ЭАиГД	подпись	В. А. Салихов
Рабочая программа обсуждена на з учебно-методического совета фили		ке
Протокол № 4 от 11.03.2021	•	
Председатель УМС	John ()	Е. А. Нагрелли
	подпись	
Согласовано Заместитель лиректора по УР	(p) For (d)	Е. А. Нагрелли

подпись

1 Перечень планируемых результатов обучения по дисциплине "Химия", соотнесенных с планируемыми результатами освоения образовательной программы

Освоение дисциплины направлено на формирование:

универсальных компетенций:

УК-1 - Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач

Результаты обучения по дисциплине определяются индикаторами достижения компетенций

Индикатор(ы) достижения:

Использует знание химии простых веществ и соединений для решения поставленных задач.

Результаты обучения по дисциплине:

Знать основные законы химической термодинамики и кинетики, свойства растворов, теорию электролитической диссоциации, окислительно-восстановительные, электрохимические процессы и химические свойства элементов периодической системы.

Уметь самостоятельно анализировать химические процессы, составлять уравнения реакций, выполнять необходимые расчеты, пользоваться справочной литературой.

Владеть основными приемами проведения физико-химических измерений, способностью находить оптимальный подход к решению химических задач.

2 Место дисциплины "Химия" в структуре ОПОП бакалавриата

Для освоения дисциплины необходимы знания умения, навыки и (или) опыт профессиональной деятельности, полученные в рамках изучения следующих дисциплин: Информатика, Математика,

Дисциплина входит в Блок 1 «Дисциплины (модули)» ОПОП. Цель дисциплины - получение обучающимися знаний, умений, навыков и (или) опыта профессиональной деятельности, необходимых для формирования компетенций, указанных в пункте 1.

3 Объем дисциплины "Химия" в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины "Химия" составляет 3 зачетных единицы, 108 часов.

Форма обучения		Количество ча	
		3Ф	О3Ф
Курс 1/Семестр 2			
Всего часов	108		108
Контактная работа обучающихся с преподавателем (по видам учебных занятий):			
Аудиторная работа			
Лекции	16		6
Лабораторные занятия	32		12
Практические занятия			
Внеаудиторная работа			
Индивидуальная работа с преподавателем:			
Консультация и иные виды учебной деятельности			
Самостоятельная работа	60		90
Форма промежуточной аттестации	зачет		зачет

4 Содержание дисциплины "Химия", структурированное по разделам (темам)

4.1. Лекционные занятия

		Трудоемко часах	
	ОΦ	3Ф	ОЗФ
Раздел 1. Теоретические основы химии			
Тема № 1. Введение. Основные понятия и законы химии. Классификация веществ: Предмет химии. Основные свойства и классификация веществ. Основные законы химии. Типы химических реакций. Химические системы и их разновидности.	2		1
Тема № 2. Основы химической термодинамики: Задачи химической термодинамики. Типы систем. Условия существования систем. Фазовые равновесия. Первый закон термодинамики. Энергетика химических процессов (термохимия). Закон Гесса и тепловой эффект реакции (энтальпия). Второй закон термодинамики. Энтропия. Направление протекания процессов.			1
Тема № 3. Кинетика химических реакций: Химическое равновесие. Скорость химической реакции и методы ее регулирования. Законы действующих масс. Влияние температуры на скорость реакций. Уравнение Аррениуса. Энергия активации. Механизм реакций. Гетерогенные реакции. Каталитические системы: катализ и катализаторы. Химическое равновесие. Константа равновесия.			1
Тема № 4. Растворы: Классификация растворов. Жидкие растворы. Способы выражения состава растворов. Разбавленные растворы неэлектролитов, их коллигативные свойства. Электролиты. Типы и особенности ионных обменных реакций в растворах электролитов. Ионные равновесия в растворах электролитов. Кислотность и щелочность растворов, методы её оценки и контроля. Кислотно-основные свойства веществ. Гидролиз солей, количественная характеристика процесса гидролиза. Дисперсные системы.	2		1
Тема № 5. Окислительно-восстановительные процессы: Окислительно-восстановительные свойства веществ. Особенности и типы окислительно-восстановительных реакций. Важнейшие окислители и восстановители. Окислительно-восстановительная двойственность. Влияние внешних условий на характер реакций.			1
Тема № 6. Электрохимические процессы: Общие закономерности электрохимических процессов. Электродные потенциалы. Водородная шкала потенциалов. Электрохимические системы. Гальванические элементы и аккумуляторы, процессы электролиза. Коррозия металлов в горной промышленности. Роль воды в процессе коррозии. Методы защиты от коррозии.			0,5
Тема № 7. Химия элементов: Металлы. Их классификация. Химико-технологические процессы получения металлов из руд.	2		0,5
Итого	16		6

4.2. Лабораторные занятия

-		Трудоемкость в часах	
	ОΦ	3Ф	ОЗФ
Лабораторная работа № 1. Техника безопасности. Правила работы в химической лаборатории. Классификация и номенклатура неорганических веществ.	4		1
Лабораторная работа № 2. Измерение термодинамических характеристик химических процессов.	2		2
Лабораторная работа № 3. Кинетика химических реакций. Химическое равновесие.	4		2
Лабораторная работа № 4. Приготовление растворов заданной концентрации.	4		1
Лабораторная работа № 5. Свойства растворов электролитов. Направление ионных реакций. Гидролиз солей.			1
Лабораторная работа № 6. Окислительно-восстановительные реакции.	4		1
Лабораторная работа $№ 7$. Гальванические элементы. Направление окислительновосстановительных процессов.			1
Лабораторная работа № 8. Коррозия металлов.	2		1
Лабораторная работа № 9. Электролиз водных растворов.	2		1
Лабораторная работа № 10. Легкие конструкционные материалы. Тяжелые конструкционные материалы.	4		1
Итого:	32		12

43. Самостоятельная работа обучающегося и перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

Вид СРС	Трудоемкость часах		сость в
	ОΦ	3Ф	ОЗФ
Ознакомление с содержанием основной и дополнительной литературы, методических материалов, конспектов лекций для подготовки к занятиям по следующим темам: основные понятия и законы химии; классификация веществ; основы химической термодинамики; кинетика химических реакций; растворы; окислительновосстановительные процессы; электрохимические процессы; химия элементов; конструкционные материалы.			30
Подготовка и оформление отчетов по лабораторным работам	20		30
Подготовка к текущему контролю успеваемости и промежуточной аттестации	20		30
Итого:	60		90

5 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине "Химия"

5.1 Паспорт фонда оценочных средств

Форма текущего				Уровень
			дисциплине (модулю)	
умений, навыков,		компетенции		
необходимых для				
формирования соответствующей				
компетенции	(модуля)			
Опрос контрольным	VK-1	Использует	Знать основные законы химической	Высокий
вопросам, подготовка		1	термодинамики и кинетики, свойства	I
отчетов по			растворов, теорию	I
лабораторным		веществ и	электролитической диссоциации,	
работам, тестирование		соединений для	окислительно-восстановительные,	
и т.п. в соответствии с			электрохимические процессы и	
рабочей программой		поставленных	химические свойства элементов	
		задач.	периодической системы.	
			Уметь самостоятельно анализировать	
			химические процессы, составлять	
			уравнения реакций, выполнять	
			необходимые расчеты, пользоваться	
			справочной литературой.	
			Владеть основными приемами	
			проведения физико-химических	
			измерений, способностью находить	
			оптимальный подход к решению	
			химических задач.	

Высокий уровень результатов обучения - знания, умения и навыки соотносятся с индикаторами достижения компетенции, рекомендованные оценки: отлично; хорошо; зачтено.

Средний уровень результатов обучения - знания, умения и навыки соотносятся с индикаторами достижения компетенции, рекомендованные оценки: хорошо; удовлетворительно; зачтено.

Низкий уровень результатов обучения - знания, умения и навыки не соотносятся с индикаторами достижения компетенции, оценивается неудовлетворительно или не зачтено.

1628024884

5.2. Типовые контрольные задания или иные материалы

Текущий контроль успеваемости и аттестационные испытания обучающихся могут быть организованы с использованием ресурсов ЭИОС филиала КузГТУ.

Текущий контроль успеваемости и аттестационные испытания могут проводиться в письменной и (или) устной, и (или) электронной форме.

5.2.1.Оценочные средства при текущем контроле

Текущий контроль по темам дисциплины заключается в опросе по контрольным вопросам и (или) тестировании, подготовке отчетов по лабораторным работам.

Опрос по контрольным вопросам:

При проведении текущего контроля обучающимся будет письменно либо устно задано два вопроса, на которые они должны дать ответы.

Например:

- 1. Закон Гесса.
- 2. Первый закон термодинамики.

Критерии оценивания:

85-100 баллов - при правильном и полном ответе на два вопроса;

65-84 баллов - при правильном и полном ответе на один из вопросов и правильном, но не полном ответе на другой из вопросов;

25-64 баллов - при правильном и неполном ответе только на один из вопросов;

0-24 баллов - при отсутствии правильных ответов на вопросы.

Количество баллов	0-24	25-64	65-84	85-100
Шкала оценивания	неуд	удовл	хорошо	отлично

Примерный перечень контрольных вопросов:

Тема 1. Введение. Основные понятия и законы химии. Классификация веществ: Предмет химии. Основные свойства и классификация веществ. Основные законы химии. Типы химических реакций. Химические системы и их разновидности.

- 1. Составьте в молекулярной и ионной формах уравнения
- 2. Напишите формулы средней, кислой и основной солей
- 3. Приведите пример амфотерного вещества и докажите это соответствующими уравнениями
- 4. Основные свойства и классификация веществ.
- 5. Основные законы химии.

Тема № 2. Основы химической термодинамики: Задачи химической термодинамики. Типы систем. Условия существования систем. Фазовые равновесия. Первый закон термодинамики. Энергетика химических процессов (термохимия). Закон Гесса и тепловой эффект реакции (энтальпия). Второй закон термодинамики. Энтропия. Направление протекания процессов.

- 1. Дайте определения понятиям: термодинамическая система, термодинамические параметры, термодинамический процесс, функция состояния системы
- 2. Типы систем
- 3. Условия существования систем.
- 4. Фазовые равновесия.
- 5. Первый закон термодинамики.

Тема № 3. Кинетика химических реакций: Химическое равновесие. Скорость химической реакции и методы ее регулирования. Законы действующих масс. Влияние температуры на скорость реакций. Уравнение Аррениуса. Энергия активации. Механизм реакций. Гетерогенные реакции. Каталитические системы: катализ и катализаторы. Химическое равновесие. Константа равновесия.

- 1. Вычислите температурный коэффициент скорости реакции
- 2. На сколько градусов следует повысить температуру, чтобы скорость реакции увеличилась в 81 раз, если температурный коэффициент скорости равен 3?

1628024884

- 3. Химическое равновесие.
- 4. Скорость химической реакции и методы ее регулирования.
- 5. Законы действующих масс.

Тема № 4. Растворы: Классификация растворов. Жидкие растворы. Способы выражения состава растворов. Разбавленные растворы неэлектролитов, их коллигативные свойства. Электролиты. Типы и особенности ионных обменных реакций в растворах электролитов. Ионные равновесия в растворах электролитов. Кислотность и щелочность растворов, методы её оценки и контроля. Кислотно-основные свойства веществ. Гидролиз солей, количественная характеристика процесса гидролиза. Дисперсные системы.

- 1. Дайте определения понятиям: раствор, растворитель, растворённое вещество, электролит, количество вещества, плотность, концентрация, интерполяция.
- 2. Охарактеризуйте концентрированные, разбавленные, насыщенные, ненасыщенные и пересыщенные растворы. Как изменяется состояние раствора при изменении температуры? При изменении давления?
- 3. Назовите способы выражения состава растворов, приведите их обозначения и укажите размерность величин. В каких случаях используют дольные единицы? В каких размерные?
- 4. Способы выражения состава растворов.
- 5. Разбавленные растворы неэлектролитов, их коллигативные свойства.

Тема № 5. Окислительно-восстановительные процессы: Окислительно-восстановительные свойства веществ. Особенности и типы окислительно-восстановительных реакций. Важнейшие окислители и восстановители. Окислительно-восстановительная двойственность. Влияние внешних условий на характер реакций.

- 1. Окислительно-восстановительные процессы.
- 2. Окислительно-восстановительные свойства веществ.
- 3. Особенности и типы окислительно-восстановительных реакций.
- 4. Важнейшие окислители и восстановители.
- 5. Окислительно-восстановительная амфотерность.

Тема № 6. Электрохимические процессы: Общие закономерности электрохимических процессов. Электродные потенциалы. Водородная шкала потенциалов. Электрохимические системы. Гальванические элементы и аккумуляторы, процессы электролиза. Коррозия металлов в горной промышленности. Роль воды в процессе коррозии. Методы защиты от коррозии.

- 1. Электрохимические процессы
- 2. Общие закономерности электрохимических процессов.
- 3. Электродные потенциалы.
- 4. Водородная шкала потенциалов.
- 5. Электрохимические системы.

Тема № 7. Химия элементов: Металлы. Их классификация. Химико-технологические процессы получения металлов из руд.

- 1. Химия элементов
- 2. Металлы. Их классификация.
- 3. Химико-технологические процессы получения металлов из руд.

Отчеты по лабораторным работам:

По каждой работе обучающиеся самостоятельно оформляют отчеты (согласно перечню лабораторных работ п.4 рабочей программы).

Содержание отчета:

- 1. Тема работы.
- 2. Задачи работы.
- 3. Краткое описание хода выполнения работы.
- 4. Ответы на задания или полученные результаты по окончании выполнения работы (в зависимости от задач, поставленных в п. 2).
- 5. Выводы

628024884

Критерии оценивания:

75 - 100 баллов - при раскрытии всех разделов в полном объеме

0 - 74 баллов - при раскрытии не всех разделов, либо при оформлении разделов в неполном объеме.

Количество баллов	0-74	75-100
Шкала оценивания	Не зачтено	Зачтено

Тестирование:

При проведении текущего контроля обучающимся необходимо ответить на вопросы тестирования.

Тестирование может быть организовано с использованием ресурсов ЭИОС филиала КузГТУ.

Например:

Восстановление MnO₄ - в кислой среде приводит к образованию соединения (иона):

- 1. Mn²⁺
- 2. MnO₂
- 3. MnO₄ ²⁻

Критерии оценивания:

75 - 100 баллов - при ответе на ≥75% вопросов

0 - 74 баллов - при ответе на <75% вопросов

Количество баллов	0-74	75-100
Шкала оценивания	Не зачтено	Зачтено

Тема 1. Введение. Основные понятия и законы химии. Классификация веществ: Предмет химии. Основные свойства и классификация веществ. Основные законы химии. Типы химических реакций. Химические системы и их разновидности.

- 1. Выберите название соединению MnO:
- 1. Оксид марганца (IV)
- 2. Оксид марганца
- 3. Оксид марганца (II) d.Гидроксид марганца (II)
- 1. Укажите кислую соль:
- 1. NaHSO₃;
- 2. KH₂PO₄
- 3. AlOHCl₂
- 4. $Ba(NO_3)_2$
- 1. Укажите азотистую кислоту:
- 1. HNO₂
- 2. Al(OH)₂NO₃
- 3. HNO₃
- 4. AgNO₃

Тема № 2. Основы химической термодинамики: Задачи химической термодинамики. Типы систем. Условия существования систем. Фазовые равновесия. Первый закон термодинамики. Энергетика химических процессов (термохимия). Закон Гесса и тепловой эффект реакции (энтальпия). Второй закон термодинамики. Энтропия. Направление протекания процессов.

- 1. Уравнения реакций, в которых дополнительно указываются величины, сопровождающих эти реакции тепловых эффектов (ΔΗ) и термодинамические состояния всех веществ (температуру, агрегатное состояние, состав и концентрацию растворов), называются:
- 1. химическими
- 2. термодинамическими
- 3. термохимическими
- 4. теплохимическими

628024884

- 1. Экзотермические процессы сопровождающиеся уменьшением энтропии самопроизвольно
 - 1. могут протекать преимущественно при высоких температурах
 - 2. могут протекать преимущественно при низких температурах
 - 3. могут протекать при любых температурах
 - 4. протекать не могут
- 1. Термодинамические функции, которые не являются функциями состояния:
 - 1. энтропия
 - 2. энтальпия
 - 3. теплота
 - 4. работа
 - 5. энергия Гибса
 - 6. внутренняя энергия

Тема № 3. Кинетика химических реакций: Химическое равновесие. Скорость химической реакции и методы ее регулирования. Законы действующих масс. Влияние температуры на скорость реакций. Уравнение Аррениуса. Энергия активации. Механизм реакций. Гетерогенные реакции. Каталитические системы: катализ и катализаторы. Химическое равновесие. Константа равновесия.

1. В какой системе при увеличении давления химическое равновесие сместится вправо?

```
a. H_2(r) + Cl_2(r) = 2HCl(r)
b. 2SO_2(r) + O_2(r) = 2SO_3(r)
c. FeO(tb) + CO(r) = Fe(tb) + CO_2(r)
d. CO_2(r) + C(tb) = 2CO(r)
```

- 1. Верны ли следующие суждения о смещении химического равновесия в системе $4HCl(r) + O_2(r) = 2H_2O(r) + Cl_2(r)$? А. При увеличении давления равновесие в данной системе смещается в сторону продуктов реакции. Б. При увеличении концентрации хлора равновесие в системе смещается в сторону исходных веществ.
- 1. верны оба суждения
- 2. оба суждения неверны
- 3. верно только Б
- 4. верно только А
- 1. Равновесие в системе CaCO₃(тв) = CaO(тв) + CO₂(г) Q смещается вправо при
 - 1. увеличении давления
 - 2. удалении CO_2 из сферы реакции
 - 3. охлаждении
 - 4. добавлении СаО

Тема № 4. Растворы: Классификация растворов. Жидкие растворы. Способы выражения состава растворов. Разбавленные растворы неэлектролитов, их коллигативные свойства. Электролиты. Типы и особенности ионных обменных реакций в растворах электролитов. Ионные равновесия в растворах электролитов. Кислотность и щелочность растворов, методы её оценки и контроля. Кислотно-основные свойства веществ. Гидролиз солей, количественная характеристика процесса гидролиза. Дисперсные системы.

- 1. Какая соль подвергается гидролизу?
- 1. NH₄Cl
- 2. NaCl
- 3. KCl
- 4. CaCl₂
- 1. Какая соль подвергается гидролизуется по аниону?
 - 1. NaNO₃
 - 2. K₂CO₃
 - 3. KCl
 - 4. K₂SO₄

628024884

- 1. Водный раствор какой соли имеет рН>7
 - 1. K₂CO₃
 - 2. BaCl₂
 - 3. NaNO₂
 - 4. KCN

Тема № 5. Окислительно-восстановительные процессы: Окислительно-восстановительные свойства веществ. Особенности и типы окислительно-восстановительных реакций. Важнейшие окислители и восстановители. Окислительно-восстановительная двойственность. Влияние внешних условий на характер реакций.

- 1. Укажите степень окисления серы в Na₂SO₃
 - a. +6
 - b. 0
 - c. -2
 - d. +4
- 1. Какая из реакций, схемы которых приведены ниже, является окислительно-восстановительной:
 - 1. $Na_2O + 2HCl = 2 NaCl + H_2O$
 - 2. $ZnSO_4 + Na_2CO_3 = ZnCO_3 + Na_2SO_4$
 - 3. $2Na + 2H_2O = 2 NaOH + H_2$
 - 4. $CaO + 2HNO_3 = Ca(NO_3)_2 + H_2O$
- 1. Укажите восстановитель в окислительно-восстановительной реакции: $3HgS + 2HNO_3 + 6HCl = 3HgCl_2 + 3S + 2NO + 4H_2O$:
 - 1. хлор
 - 2. водород
 - 3. cepa
 - 4. ртуть
 - 5. азот

Тема № 6. Электрохимические процессы: Общие закономерности электрохимических процессов. Электродные потенциалы. Водородная шкала потенциалов. Электрохимические системы. Гальванические элементы и аккумуляторы, процессы электролиза. Коррозия металлов в горной промышленности. Роль воды в процессе коррозии. Методы защиты от коррозии.

- 1. Выберите продукты, образующиеся на инертном аноде при электролизе водного раствора Rb2SO₄:
 - 1. сернистый газ
 - 2. кислород
 - 3. водород
- 1. При электролизе водного раствора $Cr_2(SO_4)_3$ током силой 2 А масса катода увеличилась на 8 г. В течение какого времени проводили электролиз:
 - а. 6,19 ч
 - b. 1,22 ч
 - с. 9,13 ч
 - d. 3,21 ч
- 1. Выберите продукты, образующиеся на катоде при электролизе водного раствора Na₂CO₃
 - 1. водород
 - 2. углекислый газ
 - 3. кислород

Тема № 7. Химия элементов: Металлы. Их классификация. Химико-технологические процессы получения металлов из руд.

- 1. Металл, который может быть получен при электролизе водного раствора его соли, это:
- 1. медь

30248

- 2. кальций
- 3. натрий
- 4. барий
- 1. Ошибочным утверждением, относящимся к гидроксиду железа (III), является
 - 1. практически нерастворимое в воде вещество
 - 2. очень слабое основание
 - 3. очень сильный электролит
 - 4. амфотерный гидроксид, образующий ферриты при сплавлении со щелочами
- 1. Для обнаружения в растворе катионов бария можно использовать раствор:
 - 1. азотной кислоты
 - 2. хлорида кальция
 - 3. сульфата калия
 - 4. гидроксида натрия

5.2.2 Оценочные средства при промежуточной аттестации

Формой промежуточной аттестации является зачет, в процессе которого определяется сформированность обозначенных в рабочей программе компетенций.

Инструментом измерения сформированности компетенций являются:

- зачтенные отчеты обучающихся по лабораторным работам;
- ответы обучающихся на вопросы во время опроса и (или) пройденное тестирование.

При проведении промежуточного контроля обучающийся отвечает на 2 вопроса, выбранных случайным образом. Опрос может проводиться в письменной и (или) устной, и (или) электронной форме.

Ответ на вопросы:

Критерии оценивания при ответе на вопросы:

- 85-100 баллов при правильном и полном ответе на два вопроса;
- 65-84 баллов при правильном и полном ответе на один из вопросов и правильном, но не полном ответе на другой из вопросов;
- 50-64 баллов при правильном и неполном ответе только на один из вопросов;
- 0-49 баллов при отсутствии правильных ответов на вопросы.

Количество баллов	0-49	50-64	65-84	85-100
Шкала оценивания	Не за	ачтено		

Примерный перечень вопросов к зачету:

- 1. Основные понятия и законы химии. Закон сохранения массы вещества и энергии. Закон постоянства состава. Закон эквивалентов. Закон кратных отношений. Типы химических реакций.
- 2. Классы неорганических соединений. Простые и сложные вещества. Оксиды. Основные, амфотерные и кислотные гидроксиды. Соли. Получение и свойства неорганических веществ.
- 3. Понятие об энтальпии. Стандартная энтальпия образования веществ. Закон Гесса. Следствия из закона Гесса.
- 4. Энтропия. Направление реакций в изолированных системах. Стандартная энтропия образования. 5.Энергия Гиббса. Направление химических реакций неизолированных системах.
- 6. Скорость гомогенных реакций. Зависимость скорости реакции от концентрации реагирующих веществ и температуры. Закон действия масс.
- 7. Химическое равновесие в гомогенных и гетерогенных системах. Константа равновесия. Основные факторы, влияющие на химическое равновесие. Принцип Ле-Шателье.
 - 8. Катализ гомогенный и гетерогенный. Механизм действия катализаторов.
 - 9. Растворы. Способы выражения состава растворов. Растворимость. Образование растворов.
- 10.Теория электролитической диссоциации. Степень диссоциации. Сильные и слабые электролиты. Константа диссоциации.
- 11. Гидролиз солей. Слабые электролиты. Кислотно-основные свойства слабых протолитов. Константа кислотности и основности. Водородный и гидроксильный показатели. Нейтральная, кислая и щелочная среда.
- 12. Окислительно-восстановительные реакции. Окислительные и восстановительные свойства простых и сложных веществ. Факторы, влияющие на протекание окислительно-восстановительных реакций. Классификация окислительно-восстановительных реакций.
 - 13. Составление уравнений окислительно-восстановительных реакций. Метод электронного баланса.

28024884

Ионно-электронный метод.

- 14. Электродный потенциал. Двойной электрический слой на границе раздела фаз и причины его возникновения. Электродвижущая сила. Стандартный водородный электрод и водородная шкала потенциалов. Потенциалы металлических и окислительно-восстановительных электродов. Уравнение Нернста.
- 15. Направление окислительно-восстановительных процессов. Равновесие в электрохимических системах. Химические источники тока. Принцип работы элемента Даниэля-Якоби. Анодный и катодный процессы. Электродвижущая сила. Концентрационный элемент. Сернокислотные и щелочные аккумуляторы.
 - 16. Коррозия металлов. Химическая и электрохимическая. Защита металлов от коррозии.
- 17.Электролиз расплавов и водных растворов с инертными и растворимыми электродами. Последовательность электродных процессов. Перенапряжение электрода. Законы Фарадея.
 - 18.Общие свойства металлов и сплавов.

5.2.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций

Текущий контроль успеваемости обучающихся по результатам выполнения лабораторных работ осуществляется в форме отчета, который предоставляется научно-педагогическому работнику на бумажном и (или) электронном носителе. Научно-педагогический работник, после проведения оценочных процедур, имеет право вернуть обучающемуся отчет для последующей корректировки с указанием перечня несоответствий. Обучающийся обязан устранить все указанные несоответствия и направить отчет научно-педагогическому работнику в установленные педагогическим работником сроки.

При проведении текущего контроля успеваемости в форме опроса по контрольным вопросам по распоряжению педагогического работника обучающиеся убирают все личные вещи, электронные средства связи, печатные и (или) рукописные источники информации, достают чистый лист бумаги любого размера и ручку. На листе бумаги записываются Фамилия, Имя, Отчество (при наличии), номер учебной группы и дата проведения текущего контроля успеваемости. Педагогический работник задает вопросы, которые могут быть записаны на подготовленный для ответа лист бумаги. В течение установленного педагогическим работником времени обучающиеся письменно формулируют ответы на заданные вопросы. По истечении установленного времени лист бумаги с подготовленными ответами обучающиеся передают педагогическому работнику для последующего оценивания результатов текущего контроля успеваемости.

При проведении текущего контроля успеваемости в форме тестирования по распоряжению педагогического работника обучающиеся убирают все личные вещи, электронные средства связи, печатные и (или) рукописные источники информации, получают тестовые задания в печатной форме, где указывают Фамилию, Имя, Отчество (при наличии), номер учебной группы и дату проведения текущего контроля успеваемости. В течение установленного педагогическим работником времени обучающиеся письменно проходят тестирование. По истечении установленного времени тестовые задания с ответами обучающиеся передают педагогическому работнику для последующего оценивания результатов текущего контроля успеваемости. Компьютерное тестирование проводится с использованием ЭИОС филиала КузГТУ.

Обучающиеся, которые не прошли текущий контроль успеваемости в установленные сроки, обязаны пройти его в срок до начала процедуры промежуточной аттестации по дисциплине в соответствии с расписанием промежуточной аттестации.

Промежуточная аттестация обучающихся в форме зачета проводится после завершения обучения по дисциплине в семестре в соответствии с календарным учебным графиком и расписанием промежуточной аттестации.

Для успешного прохождения процедуры промежуточной аттестации по дисциплине обучающиеся должны:

- 1. получить положительные результаты по всем предусмотренным рабочей программой формам текущего контроля успеваемости;
 - 2. получить положительные результаты аттестационного испытания.

Для успешного прохождения аттестационного испытания обучающийся в течение времени, установленного научно-педагогическим работником, осуществляет подготовку ответов на два вопроса, выбранных случайным образом.

Для подготовки ответов используется чистый лист бумаги и ручка.

На листе бумаги обучающиеся указывают свои фамилию, имя, отчество (при наличии), номер учебной группы и дату проведения аттестационного испытания.

8024884

При подготовке ответов на вопросы обучающимся запрещается использование любых электронных и печатных источников информации.

По истечении указанного времени, листы с подготовленными ответами на вопросы обучающиеся передают научно-педагогическому работнику для последующего оценивания результатов промежуточной аттестации.

Результаты промежуточной аттестации обучающихся размещаются в ЭИОС филиала КузГТУ.

Результаты текущего контроля успеваемости доводятся до сведения обучающихся в течение трех учебных дней, следующих за днем проведения текущего контроля успеваемости, и могут быть учтены педагогическим работником при промежуточной аттестации. Результаты промежуточной аттестации доводятся до сведения обучающихся в день проведения промежуточной аттестации.

При подготовке ответов на вопросы при проведении текущего контроля успеваемости и при прохождении промежуточной аттестации обучающимся запрещается использование любых электронных средств связи, печатных и (или) рукописных источников информации. В случае обнаружения педагогическим работником факта использования обучающимся при подготовке ответов на вопросы указанных источников информации - оценка результатов текущего контроля успеваемости и (или) промежуточной аттестации соответствует 0 баллов.

При прохождении текущего контроля успеваемости и промежуточной аттестации обучающимися с ограниченными возможностями здоровья и инвалидами, допускается присутствие в помещении лиц, оказывающим таким обучающимся соответствующую помощь, а для подготовки ими ответов отводится дополнительное время с учетом особенностей их психофизического развития, индивидуальных возможностей и состояния здоровья.

6 Учебно-методическое обеспечение

6.1 Основная литература

- 1. Глинка, Н. Л. Общая химия в 2 т. том 1 20-е изд., пер. и доп. учебник для вузов / Глинка Н. Л., Под ред. Попкова В.А., Бабкова А. В.. Москва : Юрайт, 2020. 357 с. ISBN 978-5-9916-9353-0. URL: https://urait.ru/book/obschaya-himiya-v-2-t-tom-1-451561 (дата обращения: 14.10.2020). Текст : электронный.
- 2. Глинка, Н. Л. Общая химия в 2 т. том 2 20-е изд., пер. и доп. учебник для вузов / Глинка Н. Л., Под ред. Попкова В.А., Бабкова А. В. Москва : Юрайт, 2020. 383 с. ISBN 978-5-9916-9355-4. URL: https://urait.ru/book/obschaya-himiya-v-2-t-tom-2-451562 (дата обращения: 14.10.2020). Текст : электронный.

6.2 Дополнительная литература

- 1. Апарнев, А. И. Общая химия. сборник заданий с примерами решений: учебное пособие для вузов / Апарнев А. И., Афонина Л. И.. 2-е изд., испр. и доп. Москва: Юрайт, 2020. 127 с. ISBN 978-5-534-09072-7. URL: https://urait.ru/book/obschaya-himiya-sbornik-zadaniy-s-primerami-resheniy-453202 (дата обращения: 14.10.2020). Текст: электронный.
- 2. Мартынова, Т. В. Химия: учебник и практикум для вузов / Мартынова Т. В., Артамонова И. В., Годунов Е. Б.; Под общ. ред. Мартыновой Т.В.. 2-е изд., испр. и доп. Москва: Юрайт, 2020. 368 с. ISBN 978-5-534-09668-2. URL: https://urait.ru/book/himiya-450500 (дата обращения: 14.10.2020). Текст: электронный.
- 3. Пузаков, С. А. Общая химия, сборник задач и упражнений: учебное пособие для вузов / Пузаков С. А., Попков В. А., Филиппова А. А.. 5-е изд., пер. и доп. Москва: Юрайт, 2021. 251 с. ISBN 978-5-534-09473-2. URL: https://urait.ru/book/obschaya-himiya-sbornik-zadach-i-uprazhneniy-468600 (дата обращения: 27.06.2021). Текст: электронный.

6.3 Методическая литература

1. Периодический закон. Периодическая система элементов. Окислительно-восстановительные свойства веществ: методические указания к лабораторной работе по дисциплине «Химия» для обучающихся всех направлений подготовки и специальностей всех форм обучения / ФГБОУ ВО «Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева», Каф. химии, технологии неорган. веществ и наноматериалов; сост.: И. В. Исакова, Н. Н. Чурилова. - Кемерово: КузГТУ, 2018. - 38 с. - URL: http://library.kuzstu.ru/meto.php?n=4482 (дата обращения: 04.08.2021). - Текст: электронный.

28024884

- 2. Химия: методические указания для самостоятельной работы по дисциплине «Химия» для студентов всех направлений бакалавриата и специалитета всех форм обучения / ФГБОУ ВО «Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева», Каф. хим. технологии неорган. веществ и наноматериалов; сост.: Т. Г. Черкасова, Э. С. Татаринова, Е. В. Черкасова. Кемерово: КузГТУ, 2017. 82 с. URL: http://library.kuzstu.ru/meto.php?n=4137 (дата обращения: 04.08.2021). Текст: электронный.
- 3. Химия : методические указания к лабораторным работам для обучающихся всех специальностей и направлений бакалавриата и всех форм обучения / Министерство науки и высшего образования Российской федерации, Кузбасский государственный технический университет им. Т. Ф. Горбачева, Кафедра химии, технологии неорганических веществ и наноматериалов ; составители: Е. В. Черкасова, В. В. Ченская. Кемерово : КузГТУ, 2020. 128 с. URL: http://library.kuzstu.ru/meto.php?n=5208 (дата обращения: 02.08.2021). Текст : электронный.

6.4 Профессиональные базы данных и информационные справочные системы

- 1. Электронная библиотечная система «Университетская библиотека онлайн» http://biblioclub.ru/
- 2. Электронная библиотечная система «Лань» http://e.lanbook.com
- 3. Электронная библиотечная система «Консультант Студента» http://www.studentlibrary.ru
- 4. Эπектронная библиотека KyзΓTV https://elib.kuzstu.ru/index.php?option=com_content&view=article&id=230&Itemid=229
 - 5. Электронная библиотечная система «Юрайт» https://urait.ru/

6.5 Периодические издания

- 1. Вестник Кузбасского государственного технического университета : научно-технический журнал (печатный/электронный) https://vestnik.kuzstu.ru/
- 2. Журнал неорганической химии : журнал (печатный/электронный) https://elibrary.ru/contents.asp?titleid=7794
- 3. Журнал общей химии : журнал (печатный/электронный) https://elibrary.ru/contents.asp?titleid=7796

7 Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

ЭИОС Филиала КузГТУ в г. Новокузнецке:

- а) Библиотека Филиала КузГТУ в г. Новокузнецке : [сайт] / Филиала КузГТУ в г. Новокузнецке. -Новокузнецк : КузГТУ, [б. г.]. URL: http://lib.kuzstu-nf.ru / (дата обращения: 11.01.2021). Текст:электронный.
- b) Портал филиала КузГТУ в г. Новокузнецке: Автоматизированная Информационная Система (АИС): [сайт] / Филиала КузГТУ в г. Новокузнецке. Новокузнецк : КузГТУ, [б. г.]. URL: http://portal.kuzstu-nf.ru /(дата обращения: 11.01.2021). Режим доступа: для авториз. пользователей. Текст: электронный.
- с) Электронное обучение : Филиала КузГТУ в г. Новокузнецке. -Новокузнецк : КузГТУ, [б. г.]. URL: http://158.46.252.206/moodle / (дата обращения: 11.01.2021). Режим доступа: для авториз. пользователей Филиала КузГТУ. Текст: электронный.

8 Методические указания для обучающихся по освоению дисциплины "Химия"

Самостоятельная работа обучающегося является частью его учебной деятельности, объемы самостоятельной работы по каждой дисциплине (модулю), практике, государственной итоговой аттестации устанавливаются в учебном плане.

Самостоятельная работа по дисциплине (модулю), практике организуется следующим образом:

- 1. До начала освоения дисциплины обучающемуся необходимо ознакомиться с содержанием рабочей программы дисциплины (модуля), программы практики в следующем порядке:
- 1.1 содержание знаний, умений, навыков и (или) опыта профессиональной деятельности, которые будут сформированы в процессе освоения дисциплины (модуля), практики;
- 1.2 содержание конспектов лекций, размещенных в электронной информационной среде КузГТУ в порядке освоения дисциплины, указанном в рабочей программе дисциплины (модуля), практики;
 - 1.3 содержание основной и дополнительной литературы.
- 2. В период освоения дисциплины обучающийся осуществляет самостоятельную работу в следующем порядке:

14

- 2.1 выполнение практических и (или) лабораторных работы и (или) отчетов в порядке, установленном в рабочей программе дисциплины (модуля), практики;
- 2.2 подготовка к опросам и (или) тестированию в соответствии с порядком, установленном в рабочей программе дисциплины (модуля), практики;
- 2.3 подготовка к промежуточной аттестации в соответствии с порядком, установленном в рабочей программе дисциплины (модуля), практики.

В случае затруднений, возникших при выполнении самостоятельной работы, обучающемуся необходимо обратиться за консультацией к педагогическому работнику. Периоды проведения консультаций устанавливаются в расписании консультаций.

9 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине "Химия", включая перечень программного обеспечения и информационных справочных систем

Для изучения дисциплины может использоваться следующее программное обеспечение:

- 1. Libre Office
- 2. Mozilla Firefox
- 3. Google Chrome
- 4. 7-zip
- 5. AIMP
- 6. Microsoft Windows
- 7. Kaspersky Endpoint Security
- 8. Браузер Спутник

10 Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине "Химия"

Помещение № 44 представляет собой учебную аудиторию для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.

Основное оборудование и технические средства обучения: доска; посадочные места по количеству обучающихся; рабочее место преподавателя; многофункциональный комплекс преподавателя; информационно-коммуникативные средства.

Лаборатория химии № 32.

Основное оборудование и технические средства обучения: доска; посадочные места по количеству обучающихся; рабочее место преподавателя; многофункциональный комплекс преподавателя; информационно-коммуникативные средства; реактивы (Серная кислота, Гидроксид натрия, Щавелевая кислота, Перманганат калия, Сульфат магния, Эриохром черный Т, Комплексон III, Мурексид, Аммиачный раствор, Сульфат аммония, Нитрат аммония, Цеолит, Вода дистеллированная); набор пробирок химических (подставки, цилиндрические пробирки ПВБ2-10х80); термостойкие стаканы В-1-50, конические колбы Кн-2-100-34 ТС ГОСТ 25336-82; мерные пипетки на 10 мл; градуированные пипетки на 3-5 мл; стеклянные палочки; фарфоровая ступка с пестиком, микрошпатели, электроплитка, спиртовка, сетка асбестированная, фильтровальная бумага, стеклянные палочки, пипетки, калориметр, мерные цилиндры на 25 см3, 50 см3 и 250 см3; колбы мерные на 50 см3; колбы плоскодонные на 250 см3; чашка Петри; бюретка на 25-30 мл; стаканы мерные на 50 см3; стаканы мерные на 100 см3; стаканы на 250-300 см3; стаканы на 500-1000 см3; воронки полипропилен d=25 и d=56; набор лабораторных ареометров АСП-3, весы технохимические; термометры; вискозиметр стеклянный типа «Пинкевича»; химические штативы ШЛХ, измеритель загрязнений жидкостей ИЗЖ, система вытяжная вентиляция; индикаторы (лакмус, финолфталеин, метилоранж, универсальная индикаторная бумага); сейф для хранения реактивов; шкаф для хранения химической посуды.

Лаборатория информационных технологий в профессиональной деятельности № 22 представляет собой учебную аудиторию для проведения учебных занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.

Основное оборудование и технические средства обучения: доска; посадочные места по количеству обучающихся; компьютеры по количеству обучающихся; рабочее место преподавателя; информационно-коммуникативные средства; .

Помещения для самостоятельной работы обучающихся, оснащенные учебной мебелью (столами, стульями), компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением

628024884

доступа в электронную информационно-образовательную среду филиала КузГТУ в г. Новокузнецке.

11 Иные сведения и (или) материалы

1. Образовательный процесс осуществляется с использованием как традиционных так и современных интерактивных технологий.

В рамках аудиторных занятий применяются следующие интерактивные методы:

- разбор конкретных примеров;
- мультимедийная презентация.
- 2. Проведение групповых и индивидуальных консультаций осуществляется в соответствии с расписанием консультаций по темам, заявленным в рабочей программе дисциплины, в период освоения дисциплины и перед промежуточной аттестацией с учетом результатов текущего контроля.

28024884