МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Кузбасский государственный технический университет имени Т. Ф. Горбачева» Филиал КузГТУ в г. Новокузнецке

ТВЕРЖДАЮ

Пиректор филиала КузГТУ

филиала КузГТУ

В г. Новокузнецке

Забнева Э.И.

замения 20 Иг.

Рабочая программа дисциплины

Моделирование электротехнических систем

Специальность 21.05.04 Горное дело Специализация / направленность (профиль) Электрификация и автоматизация горного производства

Присваиваемая квалификация "Горный инженер (специалист)"

Формы обучения очная, очно-заочная

Рабочую программу составил		
Заведующий кафедрой ЭАиГД	Подпись	В. А. Салихов
Рабочая программа обсуждена на учебно-методического совета фи		ецке
Протокол № 4 от 11.03.2021		
Председатель УМС	подпись	Е. А. Нагрелли
Согласовано Заместитель директора по УР	подпись	Е. А. Нагрелли

*

1 Перечень планируемых результатов обучения по дисциплине "Моделирование электротехнических систем", соотнесенных с планируемыми результатами освоения образовательной программы

Освоение дисциплины направлено на формирование:

профессиональных компетенций:

ПК-4 - Разработка электромеханических комплексов машин и оборудования горных предприятий, включая системы защиты и автоматики, электроприводы, преобразовательные устройства, в том числе закрытого и рудничного взрывозащищенного исполнения, и их системы управления

Результаты обучения по дисциплине определяются индикаторами достижения компетенций

Индикатор(ы) достижения:

Исследует работу электромеханических комплексов, анализирует результаты работы электротехнических комплексов современными методами, создает их цифровые модели, определяет рациональные параметры функционирования.

Результаты обучения по дисциплине:

Знать методики проведения лабораторных исследований, в том числе виртуальных - компьютерных экспериментов.

Уметь обрабатывать и интерпретировать результаты экспериментальных и лабораторных исследований электромеханических систем и их исследования, методами составления расчетных схем для анализа и синтеза сложных электромеханических систем.

Владеть навыками создания и реализации моделей электромеханических систем и их исследования, методами составления расчетных схем для анализа и синтеза сложных электромеханических систем.

2 Место дисциплины "Моделирование электротехнических систем" в структуре ОПОП специалитета

Для освоения дисциплины необходимы знания умения, навыки и (или) опыт профессиональной деятельности, полученные в рамках изучения следующих дисциплин: Информатика, Теоретические основы электротехники.

Дисциплина входит в Блок 1 «Дисциплины (модули)» ОПОП. Цель дисциплины - получение обучающимися знаний, умений, навыков и (или) опыта профессиональной деятельности, необходимых для формирования компетенций, указанных в пункте 1.

3 Объем дисциплины "Моделирование электротехнических систем" в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины "Моделирование электротехнических систем" составляет 3 зачетных единицы, 108 часов.

Форма обущения		Количество ч	
Форма обучения	ОФ	3Ф	03Ф
Курс 4/Семестр 8			
Всего часов	108		108
Контактная работа обучающихся с преподавателем (по видам учебных			
занятий):			
Аудиторная работа			
Лекции	10		10
Лабораторные занятия	10		10
Практические занятия			
Внеаудиторная работа	ı		
Индивидуальная работа с преподавателем:			
Консультация и иные виды учебной деятельности			
Самостоятельная работа	88		88
Форма промежуточной аттестации	зачет		зачет

1620090320

4 Содержание дисциплины "Моделирование электротехнических систем", структурированное по разделам (темам)

4.1. Лекционные занятия

Раздел дисциплины, темы лекций и их содержание	Трудоем	кость в часа	ЭХ
	ОФ	3Ф	ОЗФ
1. Техническое и программное обеспечение моделирования 1.1. Понятийный аппарат моделирования, канонические формы математических моделей, задачи и цели исследования математических моделей. Адекватность математических моделей. Методы упрощения моделей. Проблемы моделирования электроприводов и систем управления электроприводами 1.2. Имитационное моделирование, классификация моделей по характеру и способам использования, модель одиночного асинхронного электродвигателя. Обсуждение модели одиночного асинхронного электродвигателя. 1.3. Средства вычислительной техники и численные методы для решения задач анализа и синтеза ЭМС, моделирование статических режимов асинхронного электродвигателя. Расчетная практика в среде визуального программирования (на примере SCICOS) и среде разработки приложений (на примере LAZARUS).	4		4
2. Модель асинхронного электродвигателя в сети электроснабжения произвольной структуры 2.1. Модель многодвигательного асинхронного электропривода в системе электроснабжения. Модель одиночного асинхронного электродвигателя с кабелем в статорной цепи. Расчеты статических режимов системы: асинхронный электродвигатель - кабельная сеть. Учет распределенных параметров кабеля 2.2. Особенности расчетной практики при моделировании многодвигательного асинхронного электропривода в системе электроснабжения произвольной структуры. Методы упрощения модели многодвигательного электропривода. Учет влияния системы электроснабжения на переходные процессы в электроприводах. 2.3 Управление многодвигательным электроприводом горных машин, особенности синтеза управления многодвигательными электроприводами горных машин. Особенности синтеза управляющих устройств сложными электромеханическими системами. Результаты синтеза. Расчетная практика Моделирование электромеханических переходных процессов в системе электроснабжения горных машин. Особенности электроприводов горных машин. Каналы обмена энергией в многодвигательных электроприводах	4		4

4

3. Аналитические основы построения и моделирования замкнутых систем управления.	2	2
3.1. Классическое вариационное исчисление. Вывод формул для синтеза управляющих устройств произвольным объектом на основе		
положений классического вариационного исчисления		
3.2. Применение результатов: управление асинхронным		
электродвигателем, квазиоптимальное управление асинхронным электродвигателем		
Получение конструкций управляющих устройств электромагнитным моментом асинхронного электродвигателя. Расчетная практика в средах SCICOS и LAZARUS		
3.3. Моделирование системы управления состоянием объекта 2-го		
порядка. Задача позиционирования асинхронного электродвигателя.		
Основные положения принципа максимума Л.С. Понтрягина.		
Применение принципа максимума для синтеза устройств управляющих		
произвольным объектом.		
3.4. Моделирование управления двухдвигательным приводом. Синтез		
управляющих устройств двухдвигательным электроприводом на основе		
принципа максимума Л.С. Понтрягина.		
Общая задача управления состоянием асинхронного электродвигателя,		
управление пуском асинхронного электродвигателя. Использование достаточных условий абсолютного минимума В.Ф.Кротова для синтеза		
управляющих устройств произвольным объектом. Проблема пуска		
асинхронного электродвигателя. Постановка задачи управления пуском		
асинхронного электродвигателя. Постановка задачи управления пуском асинхронного электродвигателя. Результаты синтеза.		
чоликрониого олоктродин чтоли, гозультаты опитоза.		
Итого	10	10

4.2. Лабораторные занятия

Наименование работы	Трудоемкость в часах		ìх
	ОФ	3Ф	ОЗФ
1. Моделирование однодвигательного асинхронного электропривода в среде визуального программирования SCICOS	4		4
2. Модель однодвигательного асинхронного электропривода с кабелем в цепи статора в среде визуального программирования SCICOS	4		4
3. Моделирование электромеханических процессов многодвигательного асинхронного электропривода с кабелем в статорной цепи в среде визуального программирования SCICOS	2		2
Итого	10		10

4.3 Самостоятельная работа обучающегося и перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

Вид СРС	Трудоемкость в часах		ıx
	ОФ	3Ф	ОЗФ
Ознакомление с содержанием основной и дополнительной литературы, методических материалов, конспектов лекций для подготовки к занятиям	42		42
Оформление отчетов по практическим и(или) лабораторным работам	40		40
Подготовка к промежуточной аттестации	6		6

20090320

Итого	88		88	
-------	----	--	----	--

5 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине "Моделирование электротехнических систем"

5.1 Паспорт фонда оценочных средств

контроля знаний,		Индикатор (ы) достижения компетенции	Результаты обучения по дисциплине (модулю)	Уровень
15	освоения		()	
формирования				
соответствующей	(модуля)			
компетенции				
Опрос по контрольным	ПК -4	Исследует работу	Знать методики	Высокий
вопросам, подготовка		электромеханических	проведения лабораторных	или
отчетов по			исследований, в том числе	средний
практическим или			виртуальных -	
лабораторным		электротехнических	компьютерных	
занятиям			экспериментов.	
		современными методами,	Уметь обрабатывать и	
		создает их цифровые		
			результаты	
		рациональные параметры		
		1 - 0	лабораторных	
			исследований	
			электромеханических	
			систем и их исследования,	
			методами составления	
			расчетных схем для	
			анализа и синтеза	
			сложных	
			электромеханических	
			систем.	
			Владеть навыками	
			создания и реализации	
			моделей	
			электромеханических	
			систем и их исследования,	
			методами составления	
			расчетных схем для	
			анализа и синтеза	
			сложных	
			электромеханических	
			систем.	

Высокий уровень достижения компетенции - компетенция сформирована, рекомендованные оценки: отлично, хорошо, зачтено.

Средний уровень достижения компетенции - компетенция сформирована, рекомендованные оценки: хорошо, удовлетворительно, зачтено.

Низкий уровень достижения компетенции - компетенция не сформирована, оценивается неудовлетворительно или не зачтено.

5.2. Типовые контрольные задания или иные материалы

Текущий контроль успеваемости и аттестационные испытания обучающихся могут быть организованы с использованием ресурсов ЭИОС филиала КузГТУ.

5.2.1.Оценочные средства при текущем контроле

Текущий контроль по темам дисциплины заключается в опросе обучающихся по контрольным

вопросам, подготовке отчетов по практическим и(или) лабораторным работам.

Опрос по контрольным вопросам:

При проведении текущего контроля обучающимся будет письменно, либо устно задано два вопроса, на которые они должны дать ответы.

Например:

- 1. Каким образом выполняется моделирование режима опрокидывания асинхронного электродвигателя? Особенности численного решения.
- 2. Каким образом выполняется моделирование разрыва фаз асинхронного электродвигателя? Особенности численного решения.

Критерии оценивания:

- 85-100 баллов при правильном и полном ответе на два вопроса;
- 65-84 баллов при правильном и полном ответе на один из вопросов и правильном, но не полном ответе на другой из вопросов;
- 25-64 баллов при правильном и неполном ответе только на один из вопросов;
- 0-24 баллов при отсутствии правильных ответов на вопросы.

Количество баллов	0-24	25-64	65-84	85-100
Шкала оценивания	неуд	удовл	хорошо	отлично

Примерный перечень контрольных вопросов:

Тема 1. Техническое и программное обеспечение моделирования

- 1. Принципы построения моделей электромеханических систем в средах визуального программирования.
- 2. Представьте модель обобщенной электрической машины в одной из канонических форм записи.
- 3. Принципы составления сложных иерархических моделей в средах визуального программирования (на примере среды SCICOS).
- 4. Приведите модель кабеля, не учитывающую распределенный характер активного сопротивления и индуктивности. Как учитывается распределенный характер параметров кабеля?
- 5. Приведите модель кабеля, учитывающую емкость жил кабеля.
- 6. Какие методы решения дифференциальных уравнений вы знаете?
- 7. Расскажите об основных допущениях, принимаемых в теории обобщенной электрической машины?
- 8. Запишите уравнения связи токов и потокосцеплений обобщенной электрической машины.
- 9. Каким образом можно найти амплитуду падения напряжения в кабеле? Формула для амплитуды напряжения сети.
- 10. Влияние параметров кабельной сети на установившийся режим работы электропривода.
- 11. Расскажите о типовых электромеханических модулях.
- 12. Какое влияние оказывают двигатели друг на друга в системе электроснабжения предприятия?
- 13. Какие каналы обмена энергией в многодвигательном электроприводе вы знаете?
- 14. Чем опасен одновременный пуск нескольких двигателей, получающих питание от одного источника энергии через протяженную кабельную линию?
- 15. Способы снижения влияния двигателей друг на друга в многодвигательном электроприводе горных машин.

Тема 2. Модель асинхронного электродвигателя в сети электроснабжения произвольной структуры

- 1. Представьте математическую модель асинхронного электродвигателя, выраженную через составляющие результирующих векторов потоков статора и ротора.
- 2. Каким образом выполняется моделирование режима короткого замыкания фаз обмоток статора асинхронного электродвигателя?
- 3. Расскажите о режимах работы асинхронного электродвигателя «холостой ход» и «работа на нагрузку».
- 4. Каким образом выполняется моделирование режима опрокидывания асинхронного электродвигателя?
- 5. Каким образом выполняется моделирование разрыва фаз асинхронного электродвигателя?
- 6. Какие параметры электродвигателя изменяются при моделировании режима «изменение числа пар полюсов»?
- 7. Моделирование электродинамического торможения асинхронного электродвигателя.
- 8. Какое влияние оказывает кабель на работу однодвигательного асинхронного электропривода?
- 9. Каким образом выполняется учет емкости кабельной сети, питающей однодвигательный асинхронный электропривод?

- 10. Приведите структурную схему варианта прямого векторного управления электромагнитным моментом и частотой вращения асинхронного электродвигателя.
- 11. Приведите структурную схему варианта прямого управления моментом асинхронного электродвигателя.

Тема 3. Аналитические основы построения и моделирования замкнутых систем управления.

- 1. Приведите математическую модель многодвигательного электропривода с кабелем в статорной цепи.
- 2. Управление пуском двигателей в составе многодвигательного электропривода.
- 3. Составьте алгоритм численного решения системы дифференциальных уравнений методом Эйлера.
- 4. Составьте алгоритм численного решения системы дифференциальных уравнений методом Рунге-Кутта.
- 5. Составьте алгоритм численного решения системы дифференциальных уравнений методом Эйлера с адаптивным шагом интегрирования.
- 6. Составьте алгоритм численного решения системы дифференциальных уравнений методом Рунге-Кутты с адаптивным шагом.
- 7. Приведите формулу для нахождения падения напряжения в кабельной линии, питающей несколько двигателей? Особенности реализации на языке Pascal
- 8. Основные приемы визуализации информации в среде объектно-ориентированного программирования Lazarus.
- 9. Реализация визуальных органов управления процессом моделирования и основные приемы работы с ними в средах разработки приложений (на примере среды Lazarus).
- 10. Расскажите об особенностях асинхронного электродвигателя как объекта управления.

Отчеты по лабораторным работам (далее вместе - работы):

По каждой работе обучающиеся самостоятельно оформляют отчеты в электронном формате (согласно перечню лабораторных и(или) практических работ п.4 рабочей программы).

Содержание отчета:

- 1. Тема работы.
- 2. Задачи работы.
- 3. Краткое описание хода выполнения работы.
- 4. Ответы на задания или полученные результаты по окончании выполнения работы (в зависимости от задач, поставленных в п. 2).
- 5. Выводы

Критерии оценивания:

- 75 100 баллов при раскрытии всех разделов в полном объеме
- 0 74 баллов при раскрытии не всех разделов, либо при оформлении разделов в неполном объеме.

Количество баллов	0-74	75-100
Шкала оценивания	Не зачтено	Зачтено

5.2.2 Оценочные средства при промежуточной аттестации

Формой промежуточной аттестации во втором сесместре является зачет, в процессе которого определяется сформированность обозначенных в рабочей программе компетенций.

Инструментом измерения сформированности компетенций являются:

- зачтенные отчеты обучающихся по лабораторным и(или) практическим работам;
- ответы обучающихся на вопросы во время опроса.

При проведении промежуточного контроля обучающийся отвечает на 2 вопроса выбранных случайным образом. Опрос может проводиться в письменной и (или) устной, и (или) электронной форме.

Ответ на вопросы:

Критерии оценивания при ответе на вопросы:

- 85-100 баллов при правильном и полном ответе на два вопроса;
- 65-84 баллов при правильном и полном ответе на один из вопросов и правильном, но не полном ответе на другой из вопросов;
- 50-64 баллов при правильном и неполном ответе только на один из вопросов;

1620090320

- 0-49 баллов - при отсутствии правильных ответов на вопросы.

	Количество баллов	0-64	65-100
ĺ	Шкала оценивания	не зачтено	зачтено

Примерный перечень вопросов к зачету:

- 1. Принципы построения моделей электромеханических систем в средах визуального программирования.
- 2. Представьте модель обобщенной электрической машины в одной из канонических форм записи.
- 3. Представьте математическую модель асинхронного электродвигателя, выраженную через составляющие результирующих векторов потоков статора и ротора.
- 4. Каким образом выполняется моделирование режима короткого замыкания фаз обмоток статора асинхронного электродвигателя?
- 5. Расскажите о режимах работы асинхронного электродвигателя «холостой ход» и «работа на нагрузку».
- 6. Каким образом выполняется моделирование режима опрокидывания асинхронного электродвигателя?
- 7. Каким образом выполняется моделирование разрыва фаз асинхронного электродвигателя?
- 8. Какие параметры электродвигателя изменяются при моделировании режима «изменение числа пар полюсов»?
- 9. Моделирование электродинамического торможения асинхронного электродвигателя.
- 10. Принципы составления сложных иерархических моделей в средах визуального программирования (на примере среды SCICOS).
- 11. Какое влияние оказывает кабель на работу однодвигательного асинхронного электропривода?
- 12. Каким образом выполняется учет емкости кабельной сети, питающей однодвигательный асинхронный электропривод?
- 13. Приведите модель кабеля, не учитывающую распределенный характер активного сопротивления и индуктивности. Как учитывается распределенный характер параметров кабеля?
- 14. Приведите модель кабеля, учитывающую емкость жил кабеля.
- 15. Какие методы решения дифференциальных уравнений вы знаете?
- 16. Расскажите об основных допущениях, принимаемых в теории обобщенной электрической машины?
- 17. Запишите уравнения связи токов и потокосцеплений обобщенной электрической машины.
- 18. Каким образом можно найти амплитуду падения напряжения в кабеле? Формула для амплитуды напряжения сети.
- 19. Влияние параметров кабельной сети на установившийся режим работы электропривода.
- 20. Расскажите о типовых электромеханических модулях.
- 21. Какое влияние оказывают двигатели друг на друга в системе электроснабжения предприятия?
- 22. Какие каналы обмена энергией в многодвигательном электроприводе вы знаете?
- 23. Чем опасен одновременный пуск нескольких двигателей, получающих питание от одного источника энергии через протяженную кабельную линию?
- 24. Способы снижения влияния двигателей друг на друга в многодвигательном электроприводе горных машин.
- 25. Расскажите о влиянии параметров кабельной линии на условия работы и пуска многодвигательного электропривода?
- 26. Приведите формулу для нахождения падения напряжения в кабельной линии, питающей несколько двигателей?
- 27. Приведите математическую модель многодвигательного электропривода с кабелем в статорной цепи.
- 28. Управление пуском двигателей в составе многодвигательного электропривода.
- 29. Составьте алгоритм численного решения системы дифференциальных уравнений методом Эйлера.
- 30. Составьте алгоритм численного решения системы дифференциальных уравнений методом Рунге-Кутта.
- 31. Составьте алгоритм численного решения системы дифференциальных уравнений методом Эйлера с адаптивным шагом интегрирования.
- 32. Составьте алгоритм численного решения системы дифференциальных уравнений методом Рунге-Кутты с адаптивным шагом.
- 33. Приведите формулу для нахождения падения напряжения в кабельной линии, питающей несколько двигателей? Особенности реализации на языке Pascal
- 34. Основные приемы визуализации информации в среде объектно-ориентированного программирования Lazarus.
- 35. Реализация визуальных органов управления процессом моделирования и основные приемы работы с ними в средах разработки приложений (на примере среды Lazarus).
- 36. Расскажите об особенностях асинхронного электродвигателя как объекта управления.

- 37. Приведите структурную схему варианта прямого векторного управления электромагнитным моментом и частотой вращения асинхронного электродвигателя.
- 38. Приведите структурную схему варианта прямого управления моментом асинхронного электродвигателя.
- 39. Расскажите о достоинствах и недостатках варианта скалярного управления состоянием асинхронного электродвигателя.
- 40. Выполните синтез управляющих устройств состоянием асинхронного электродвигателя при помощи методов классического вариационного исчисления.
- 41. Выполните синтез управляющих устройств состоянием асинхронного электродвигателя при помощи принципа максимума Л.С. Понтрягина.
- 42. Выполните синтез управляющих устройств состоянием асинхронного электродвигателя при помощи условий абсолютного минимума В.Ф. Кротова.
- 43. Сравните варианты синтеза управляющих устройств состоянием асинхронного электродвигателя.
- 44. Сравните известные методы управления состоянием асинхронного электродвигателя.
- 45. Расскажите об особенностях реализации управляющих устройств состоянием асинхронного электродвигателя в средах разработки приложений (на примере среды Lazarus).
- 46. Что влияет на устойчивость работы управляющих устройств в реальных системах и как эти обстоятельства можно учесть в модели управляемого асинхронного электропривода.

5.2.3. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие этапы формирования компетенций

1. Текущий контроль успеваемости обучающихся, осуществляется в следующем порядке: в конце завершения освоения соответствующей темы обучающиеся, по распоряжению педагогического работника, убирают все личные вещи, электронные средства связи и печатные источники информации.

Для подготовки ответов на вопросы обучающиеся используют чистый лист бумаги любого размера и ручку. На листе бумаги обучающиеся указывают свои фамилию, имя, отчество (при наличии), номер учебной группы и дату проведения текущего контроля успеваемости.

Научно-педагогический работник устно задает два вопроса, которые обучающийся может записать на подготовленный для ответа лист бумаги.

В течение установленного научно-педагогическим работником времени обучающиеся письменно формулируют ответы на заданные вопросы. По истечении указанного времени листы бумаги с подготовленными ответами обучающиеся передают научно-педагогическому работнику для последующего оценивания результатов текущего контроля успеваемости.

При подготовке ответов на вопросы обучающимся запрещается использование любых электронных и печатных источников информации. В случае обнаружения научно-педагогическим работником факта использования обучающимся при подготовке ответов на вопросы указанные источники информации - оценка результатов текущего контроля соответствует 0 баллов и назначается дата повторного прохождения текущего контроля успеваемости.

Текущий контроль успеваемости обучающихся по результатам выполнения лабораторных и (или) практических работ осуществляется в форме отчета, который предоставляется научно-педагогическому работнику на бумажном и (или) электронном носителе. Научно-педагогический работник, после проведения оценочных процедур, имеет право вернуть обучающемуся отчет для последующей корректировки с указанием перечня несоответствий. Обучающийся обязан устранить все указанные несоответствия и направить отчет научно-педагогическому работнику в срок, не превышающий трех учебных дней, следующих за днем проведения текущего контроля успеваемости.

Результаты текущего контроля доводятся до сведения обучающихся в течение трех учебных дней, следующих за днем проведения текущего контроля успеваемости.

Обучающиеся, которые не прошли текущий контроль успеваемости в установленные сроки, обязаны пройти его в срок до начала процедуры промежуточной аттестации по дисциплине в соответствии с расписанием промежуточной аттестации.

Результаты прохождения процедур текущего контроля успеваемости обучающихся учитываются при оценивании результатов промежуточной аттестации обучающихся.

2. Промежуточная аттестация обучающихся проводится после завершения обучения по дисциплине в семестре в соответствии с календарным учебным графиком и расписанием промежуточной аттестации.

Для успешного прохождения процедуры промежуточной аттестации по дисциплине обучающиеся должны:

1. получить положительные результаты по всем предусмотренным рабочей программой формам текущего контроля успеваемости;

1 N

2. получить положительные результаты аттестационного испытания.

Для успешного прохождения аттестационного испытания обучающийся в течение времени, установленного научно-педагогическим работником, осуществляет подготовку ответов на два вопроса, выбранных в случайном порядке.

Для подготовки ответов используется чистый лист бумаги и ручка.

На листе бумаги обучающиеся указывают свои фамилию, имя, отчество (при наличии), номер учебной группы и дату проведения аттестационного испытания.

При подготовке ответов на вопросы обучающимся запрещается использование любых электронных и печатных источников информации.

По истечении указанного времени, листы с подготовленными ответам на вопросы обучающиеся передают научно-педагогическому работнику для последующего оценивания результатов промежуточной аттестации.

В случае обнаружения научно-педагогическим работником факта использования обучающимся при подготовке ответов на вопросы указанные источники информации - оценка результатов промежуточной аттестации соответствует 0 баллов и назначается дата повторного прохождения аттестационного испытания.

Результаты промежуточной аттестации обучающихся размещаются в ЭИОС филиала КузГТУ.

Текущий контроль успеваемости и промежуточная аттестация обучающихся могут быть организованы с использованием ЭИОС филиала КузГТУ, порядок и формы проведения текущего контроля успеваемости и промежуточной аттестации обучающихся при этом не меняется.

6 Учебно-методическое обеспечение

6.1 Основная литература

- 1. Калугин, М. В. Диагностика и надежность электромеханических систем транспортного комплекса : учебное пособие для студентов бакалавриата по направлению "Электротехника и электроэнергетика" / М. В. Калугин, В. В. Бирюков. Новосибирск : НГТУ, 2015. 236 с. (Учебники НГТУ). URL: http://biblioclub.ru/index.php?page=book_red&id=438375. Текст : непосредственный + электронный.
- 2. Юдаев, И. В. История науки и техники: электроэнергетика и электротехника: учебное пособие [для студентов и обучающихся на всех уровнях высшего образования (бакалавриат, магистратура, специалитет, подготовка кадров высшей квалификации)] / И. В. Юдаев, И. В. Глушко, Т. М. Зуева. Санкт-Петербург: Лань, 2019. 340 с. (Бакалавриат и магистратура). Текст: непосредственный.

6.2 Дополнительная литература

- 1. Альсова, О. К. Имитационное моделирование систем в среде ExtendSim / О. К. Альсова; Новосибирский государственный технический университет. Новосибирск : Новосибирский государственный технический университет, 2017. 104 с. ISBN 9785778228405. URL: http://biblioclub.ru/index.php?page=book_red&id=574615 (дата обращения: 01.08.2021). Текст : электронный.
- 2. Данилов, И. А. Общая электротехника : учебное пособие для бакалавров : [для студентов неэлектротехнических специальностей вузов и техникумов] / И. А. Данилов. Москва : Юрайт, 2012. 673 с. (Бакалавр). Текст : непосредственный.
- 3. Рюмин, В. В. Занимательная электротехника / Рюмин В. В.. Москва : Юрайт, 2021. 122 с. ISBN 978-5-534-09431-2. URL: https://urait.ru/book/zanimatelnaya-elektrotehnika-475183 (дата обращения: 27.06.2021). Текст : электронный.

6.3 Методическая литература

1. Методические рекомендации по организации учебной деятельности обучающихся КузГТУ / ФГБОУ ВО «Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева», Каф. приклад. информ. технологий; сост. Л. И. Михалева. - Кемерово: КузГТУ, 2017. - 32 с. - URL: http://library.kuzstu.ru/meto.php?n=553 (дата обращения: 31.07.2021). - Текст: электронный.

6.4 Профессиональные базы данных и информационные справочные системы

009032

- 1. Электронная библиотечная система «Университетская библиотека онлайн» http://biblioclub.ru/
- 2. Электронная библиотечная система «Лань» http://e.lanbook.com
- 3. Электронная библиотечная система «Юрайт» https://urait.ru/
- 4. Справочная правовая система «КонсультантПлюс» http://www.consultant.ru/

6.5 Периодические издания

- 1. Глюкауф [журнал на рус. яз.] (С 2013 г. Майнинг Репорт Глюкауф) : журнал по сырью, горной промышленности, энергетике (печатный)
 - 2. Горная механика и машиностроение: научно-технический журнал (печатный)
 - 3. Горная промышленность : научно-технический и производственный журнал (печатный)
- 4. Горное оборудование и электромеханика : научно-практический журнал (печатный/электронный) https://gormash.kuzstu.ru/
 - 5. Горные ведомости: научный журнал (печатный)

7 Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

ЭИОС Филиала КузГТУ в г. Новокузнецке:

- а) Библиотека Филиала КузГТУ в г. Новокузнецке : [сайт] / Филиала КузГТУ в г. Новокузнецке. -Новокузнецк : КузГТУ, [б. г.]. URL: http://lib.kuzstu-nf.ru/ (дата обращения: 11.01.2021). Текст:электронный.
- b) Портал филиала КузГТУ в г. Новокузнецке: Автоматизированная Информационная Система (АИС): [сайт] / Филиала КузГТУ в г. Новокузнецке. Новокузнецк : КузГТУ, [б. г.]. URL: http://portal.kuzstu-nf.ru/(дата обращения: 11.01.2021). Режим доступа: для авториз. пользователей. Текст: электронный.
- с) Электронное обучение : Филиала КузГТУ в г. Новокузнецке. -Новокузнецк : КузГТУ, [б. г.]. URL: http://158.46.252.206/moodle/ (дата обращения: 11.01.2021). Режим доступа: для авториз. пользователей Филиала КузГТУ. Текст: электронный.

8 Методические указания для обучающихся по освоению дисциплины "Моделирование электротехнических систем"

Самостоятельная работа обучающегося является частью его учебной деятельности, объемы самостоятельной работы по каждой дисциплине (модулю) практике, государственной итоговой аттестации, устанавливаются в учебном плане.

Самостоятельная работа по дисциплине (модулю), практике организуется следующим образом:

1. До начала освоения дисциплины обучающемуся необходимо ознакомиться с содержанием рабочей программы дисциплины (модуля), программы практики в следующем порядке:

содержание знаний, умений, навыков и (или) опыта профессиональной деятельности, которые будут сформированы в процессе освоения дисциплины (модуля), практики;

содержание конспектов лекций, размещенных в электронной информационной среде КузГТУ в порядке освоения дисциплины, указанном в рабочей программе дисциплины (модуля), практики;

содержание основной и дополнительной литературы.

2. В период освоения дисциплины обучающийся осуществляет самостоятельную работу в следующем порядке:

выполнение практических и (или) лабораторных работы и (или) отчетов в порядке, установленном в рабочей программе дисциплины (модуля), практики;

подготовка к опросам и (или) тестированию в соответствии с порядком, установленном в рабочей программе дисциплины (модуля), практики;

подготовка к промежуточной аттестации в соответствии с порядком, установленном в рабочей программе дисциплины (модуля), практики.

В случае затруднений, возникших при выполнении самостоятельной работы, обучающемуся необходимо обратиться за консультацией к педагогическому работнику. Периоды проведения консультаций устанавливаются в расписании консультаций.

9 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине "Моделирование электротехнических систем",

620090320

включая перечень программного обеспечения и информационных справочных систем

Для изучения дисциплины может использоваться следующее программное обеспечение:

- 1. Libre Office
- 2. Mozilla Firefox
- 3. Google Chrome
- 4. 7-zip
- 5. AIMP
- 6. Microsoft Windows
- 7. Kaspersky Endpoint Security
- 8. Браузер Спутник

10 Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине "Моделирование электротехнических систем"

Помещение № 35 представляет собой учебную аудиторию для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.

Основное оборудование и технические средства обучения: доска; посадочные места по количеству обучающихся; рабочее место преподавателя; многофункциональный комплекс преподавателя; информационно-коммуникативные средства.

Учебно-наглядные пособия по дисциплине «Моделирование электротехнических систем».

Перечень программного обеспечения: Mozilla Firefox, Google Chrome, 7-zip, AIMP Microsoft Windows 10 Pro, Браузер Спутник, Справочная Правовая Система Консультант Плюс, линукс Альт Сервер 9.

Лаборатория информационных технологий в профессиональной деятельности № 22 представляет собой учебную аудиторию для проведения учебных занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.

Основное оборудование и технические средства обучения: доска; посадочные места по количеству обучающихся; компьютеры по количеству обучающихся; рабочее место преподавателя; информационно-коммуникативные средства; .

Учебно-наглядные пособия по дисциплине «Моделирование электротехнических систем».

Перечень программного обеспечения: Виртуальные лабораторные по физике; Mozilla Firefox, Google Chrome, 7-zip, AIMP Microsoft Windows 10 Pro, Браузер Спутник, Справочная Правовая Система Консультант Плюс, линукс Альт Сервер 9.

Помещение № 40 для самостоятельной работы обучающихся, оснащенное компьютерной техникой с возможностью подключения к сети «Интернет» и обеспеченное доступом в электронную информационно-образовательную среду организации.

Основное оборудование и технические средства обучения: Комплект мебели (столы и стулья), персональные компьютеры.

Перечень программного обеспечения: Mozilla Firefox, Google Chrome, 7-zip, AIMP Microsoft Windows 10 Pro, Браузер Спутник, Справочная Правовая Система Консультант Плюс, линукс Альт Сервер 9.

Помещение № 48 для самостоятельной работы обучающихся, оснащенное компьютерной техникой с возможностью подключения к сети «Интернет» и обеспеченное доступом в электронную информационно-образовательную среду организации.

Перечень основного оборудования: Комплект мебели (столы и стулья), персональные компьютеры. Перечень программного обеспечения: Mozilla Firefox, Google Chrome, 7-zip, AIMP Microsoft Windows 10 Pro, Браузер Спутник, Справочная Правовая Система Консультант Плюс, линукс Альт Сервер 9.

11 Иные сведения и (или) материалы

1. Образовательный процесс осуществляется с использованием как традиционных так и современных интерактивных технологий.

В рамках аудиторных занятий применяются следующие интерактивные методы:

- разбор конкретных примеров;
- мультимедийная презентация.
- 2. Проведение групповых и индивидуальных консультаций осуществляется в соответствии с расписанием консультаций по темам, заявленным в рабочей программе дисциплины, в период освоения дисциплины и перед промежуточной аттестацией с учетом результатов текущего контроля.

10903